Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Design
2.3. Participants
2.4. Training Programme
2.5. Cardiopulmonary Exercise Test
2.6. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Intra-Group Differences
3.3. Inter-Group Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rabe, K.F.; Watz, H. Chronic Obstructive Pulmonary Disease. Lancet 2017, 389, 1931–1940. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, B.; Casey, D.; Devane, D.; Murphy, K.; Murphy, E.; Lacasse, Y. Pulmonary Rehabilitation for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2015, CD003793. [Google Scholar] [CrossRef] [PubMed]
- Garvey, C.; Bayles, M.P.; Hamm, L.F.; Hill, K.; Holland, A.; Limberg, T.M.; Spruit, M.A. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: An Official Statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2016, 36, 75–83. [Google Scholar] [CrossRef]
- Gosselink, R.; De Vos, J.; van den Heuvel, S.P.; Segers, J.; Decramer, M.; Kwakkel, G. Impact of Inspiratory Muscle Training in Patients with COPD: What Is the Evidence? Eur. Respir. J. 2011, 37, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Forget, P.; Couturaud, F.; Reychler, G. Effects of Inspiratory Muscle Training in COPD Patients: A Systematic Review and Meta-Analysis. Clin. Respir. J. 2018, 12, 2178–2188. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Mialon, P.; Le Ber, C.; Le Mevel, P.; Péran, L.; Meurisse, O.; Morelot-Panzini, C.; Dion, A.; Couturaud, F. Effects of Inspiratory Muscle Training on Dyspnoea in Severe COPD Patients during Pulmonary Rehabilitation: Controlled Randomised Trial. Eur. Respir. J. 2018, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, K.; Jelusic, D.; Wittmann, M.; Krämer, B.; Huber, V.; Fuchs, S.; Lehbert, N.; Wingart, S.; Stojanovic, D.; Göhl, O.; et al. Inspiratory Muscle Training Does Not Improve Clinical Outcomes in 3-Week COPD Rehabilitation: Results from a Randomised Controlled Trial. Eur. Respir. J. 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zeng, G.-Q.; Li, R.; Luo, Y.-W.; Wang, M.; Hu, Y.-H.; Xu, W.-H.; Zhou, L.-Q.; Chen, R.-C.; Chen, X. Cycle Ergometer and Inspiratory Muscle Training Offer Modest Benefit Compared with Cycle Ergometer Alone: A Comprehensive Assessment in Stable COPD Patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2655–2668. [Google Scholar] [CrossRef] [Green Version]
- Shei, R.-J. Recent Advancements in Our Understanding of the Ergogenic Effect of Respiratory Muscle Training in Healthy Humans: A Systematic Review. J. Strength Cond. Res. 2018, 32, 2665–2676. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Montesinos, J.L.; Arnedillo, A.; Vaz-Pardal, C.; Fernandez-Santos, J.R. Dispositivo Para El Entrenamiento de La Musculatura Nasal. Utility model U201930922, 6 August 2019. Available online: https://consultas2.oepm.es/InvenesWeb/detalle?referencia=PCT/ES2020/070364 (accessed on 10 December 2020).
- Gonzalez-Montesinos, J.L.; Arnedillo, A.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; García, P.A.; Castro-Piñero, J.; Ponce-González, J.G. A New Nasal Restriction Device Called FeelBreathe(®) Improves Breathing Patterns in Chronic Obstructive Pulmonary Disease Patients during Exercise. Int. J. Environ. Res. Public Health 2020, 17, 4876. [Google Scholar] [CrossRef]
- Arnedillo, A.; Gonzalez-Montesinos, J.L.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; España-Domínguez, C.; Ponce-González, J.G.; Cuenca-García, M. Effects of a Rehabilitation Programme with a Nasal Inspiratory Restriction Device on Exercise Capacity and Quality of Life in COPD. Int. J. Environ. Res. Public Health 2020, 17, 3669. [Google Scholar] [CrossRef] [PubMed]
- Boutou, A.K.; Zafeiridis, A.; Pitsiou, G.; Dipla, K.; Kioumis, I.; Stanopoulos, I. Cardiopulmonary Exercise Testing in Chronic Obstructive Pulmonary Disease: An Update on Its Clinical Value and Applications. Clin. Physiol. Funct. Imaging 2020, 40, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Stringer, W.; Marciniuk, D. The Role of Cardiopulmonary Exercise Testing (CPET) in Pulmonary Rehabilitation (PR) of Chronic Obstructive Pulmonary Disease (COPD) Patients. COPD 2018, 15, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Palange, P.; Ward, S.A.; Carlsen, K.-H.; Casaburi, R.; Gallagher, C.G.; Gosselink, R.; O’Donnell, D.E.; Puente-Maestu, L.; Schols, A.M.; Singh, S.; et al. Recommendations on the Use of Exercise Testing in Clinical Practice. Eur. Respir. J. 2007, 29, 185–209. [Google Scholar] [CrossRef]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases. Eur. Respir. Rev. 2019, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uschner, D.; Schindler, D.; Hilgers, R.-D.; Heussen, N. RandomizeR: An R Package for the Assessment and Implementation of Randomization in Clinical Trials. J. Stat. Softw. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) Dyspnoea Scale as a Measure of Disability in Patients with Chronic Obstructive Pulmonary Disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Gloeckl, R.; Marinov, B.; Pitta, F. Practical Recommendations for Exercise Training in Patients with COPD. Eur. Respir. Rev. 2013, 22, 178–186. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Hsia, D.; Casaburi, R.; Pradhan, A.; Torres, E.; Porszasz, J. Physiological Responses to Linear Treadmill and Cycle Ergometer Exercise in COPD. Eur. Respir. J. 2009, 34, 605–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, S.M.; Rodgers, W.; Haennel, R.G.; MacDonald, G.F.; Bryan, T.L.; Bhutani, M.; Wong, E.; Stickland, M.K. Effect of Modality on Cardiopulmonary Exercise Testing in Male and Female COPD Patients. Respir. Physiol. Neurobiol. 2014, 192, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Neder, J.A.; Berton, D.C.; Arbex, F.F.; Alencar, M.C.; Rocha, A.; Sperandio, P.A.; Palange, P.; O’Donnell, D.E. Physiological and Clinical Relevance of Exercise Ventilatory Efficiency in COPD. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Neder, J.A.; Alharbi, A.; Berton, D.C.; Alencar, M.C.N.; Arbex, F.F.; Hirai, D.M.; Webb, K.A.; O’Donnell, D.E. Exercise Ventilatory Inefficiency Adds to Lung Function in Predicting Mortality in COPD. COPD 2016, 13, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.B.; Collins, S.É.; Stickland, M.K. Measurement and Interpretation of Exercise Ventilatory Efficiency. Front. Physiol. 2020, 11, 659. [Google Scholar] [CrossRef]
- Gelman, A.; Simpson, D.; Betancourt, M. The Prior Can Generally Only Be Understood in the Context of the Likelihood. Entropy 2017, 19, 555. [Google Scholar] [CrossRef] [Green Version]
- Bürkner, P.-C. Brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Wagenmakers, E.-J.; Lodewyckx, T.; Kuriyal, H.; Grasman, R. Bayesian Hypothesis Testing for Psychologists: A Tutorial on the Savage-Dickey Method. Cogn. Psychol. 2010, 60, 158–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvert, L.D.; Singh, S.J.; Morgan, M.D.; Steiner, M.C. Exercise Induced Skeletal Muscle Metabolic Stress Is Reduced after Pulmonary Rehabilitation in COPD. Respir. Med. 2011, 105, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; LeBlanc, P.; Simard, C.; Jobin, J.; Bérubé, C.; Bruneau, J.; Carrier, L.; Belleau, R. Skeletal Muscle Adaptation to Endurance Training in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1996, 154, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, R.; Patessio, A.; Ioli, F.; Zanaboni, S.; Donner, C.F.; Wasserman, K. Reductions in Exercise Lactic Acidosis and Ventilation as a Result of Exercise Training in Patients with Obstructive Lung Disease. Am. Rev. Respir. Dis. 1991, 143, 9–18. [Google Scholar] [CrossRef]
- Güell Rous, M.R.; Díaz Lobato, S.; Rodríguez Trigo, G.; Morante Vélez, F.; San Miguel, M.; Cejudo, P.; Ortega Ruiz, F.; Muñoz, A.; Galdiz Iturri, J.B.; García, A.; et al. Pulmonary rehabilitation. Sociedad Española de Neumología y Cirugía Torácica (SEPAR). Arch. Bronconeumol. 2014, 50, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Shei, R.-J.; Mickleborough, T.D. Unresolved Questions That Need to Be Addressed in Order to Maximize the Efficacy of Inspiratory Muscle Training. Phys. Ther. Sport 2019, 35, 97–98. [Google Scholar] [CrossRef]
- Shei, R.-J. Training Load Influences the Response to Inspiratory Muscle Training. J. Sports Sci. Med. 2020, 19, 772–773. [Google Scholar] [PubMed]
- Karsten, M.; Ribeiro, G.S.; Esquivel, M.S.; Matte, D.L. Maximizing the Effectiveness of Inspiratory Muscle Training in Sports Performance: A Current Challenge. Phys. Ther. Sport 2019, 36, 68–69. [Google Scholar] [CrossRef] [PubMed]
Variables | FBG (n = 7) | ONBG (n = 5) | CG (n = 4) | FBG vs. ONBG | BF10 | FBG vs. CG | BF10 | ONBG vs. CG | BF10 |
---|---|---|---|---|---|---|---|---|---|
Age (years) | 65.0 ± 8.0 | 72.0 ± 7.4 | 70.2 ± 5.9 | −4.8 (−14.8, 6.2) | 0.1 | −6.6 (−15.5, 3.6) | 0.3 | 1.7 (−10.0, 12.9) | 0.1 |
BMI (m/kg2) | 28.4 ± 4.2 | 26.8 ± 2.5 | 25.9 ± 2.1 | 1.5 (−2.4, 5.4) | 0.3 | 2.3 (−2.0, 6.3) | 0.2 | 0.8 (−3.6, 5.5) | 0.2 |
FEV1 (mL) | 1571 ± 334 | 1608 ± 344 | 1812 ± 706 | −23.5 (−557, 469) | 0.1 | −218 (−760, 349) | 0.1 | 194 (−441, 773) | 0.1 |
FEV1 (% predicted) | 46.9 ± 10.6 | 51.2 ± 9.8 | 52.6 ± 19.9 | −3.7 (−18.4, 11.1) | 0.1 | −5.4 (−21.6, 10.8) | 0.1 | −1.8 (−19.8, 16.1) | 0.1 |
FVC (mL) | 2869 ± 298 | 2580 ± 577 | 3270 ± 474 | 283 (−260, 801) | 0.3 | −382 (−929, 207) | 0.1 | −665 (−1317, −22.9) | >100 |
FVC (% predicted) | 63.9 ± 8.3 | 59.2 ± 10.0 | 67.1 ± 13.8 | 4.5 (−7.4, 17.1) | 0.3 | −3.1 (−15.9, 10.1) | 0.1 | −7.6 (−21.5, 7.7) | 0.3 |
FEV/FVC (%) | 54.1 ± 6.9 | 62.6 ± 5.6 | 54.2 ± 14.7 | −8.1 (−18.7, 2.8) | 0.2 | 0.0 (−11.4, 11.4) | 0.1 | 8.1 (−4.2, 20.8) | 0.3 |
PImax (mmHg) | 93.3 ± 19.1 | 85.6 ± 23.9 | 102.0 ± 14.9 | 7.9 (−15.6, 31.1) | 0.1 | −7.6 (−34.3, 17.3) | 0.2 | −15.5 (−42.8, 12.5) | 0.2 |
CAT (score) | 9.7 ± 6.5 | 10.0 ± 4.5 | 6.8 ± 4.4 | −0.3 (−6.8, 6.4) | 0.1 | 2.7 (−3.8, 9.7) | 0.2 | 3.0 (−4.5, 10) | 0.1 |
mMRC (score|%) | P(Y|FB) | P(Y|ONB) | P(Y|CG) | ||||||
0 | 0 (0%) | 0 (0%) | 0 (0%) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | |||
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0.0 (0.0, 0.1) | 0.0 (0.0, 0.2) | 0.0 (0.0, 0.2) | |||
2 | 6 (85%) | 5 (100%) | 4 (100%) | 0.9 (0.6, 0.1) | 0.9 (0.7, 1.0) | 0.9 (0.7, 1.0) | |||
3 | 1 (15%) | 0 (0%) | 0 (0%) | 0.1 (0.0, 0.4) | 0.0 (0.0, 0.2) | 0.0 (0.0, 0.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Montesinos, J.L.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; Ponce-Gonzalez, J.G.; Marin-Galindo, A.; Arnedillo, A. Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD. Int. J. Environ. Res. Public Health 2021, 18, 4207. https://doi.org/10.3390/ijerph18084207
Gonzalez-Montesinos JL, Fernandez-Santos JR, Vaz-Pardal C, Ponce-Gonzalez JG, Marin-Galindo A, Arnedillo A. Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD. International Journal of Environmental Research and Public Health. 2021; 18(8):4207. https://doi.org/10.3390/ijerph18084207
Chicago/Turabian StyleGonzalez-Montesinos, Jose L., Jorge R. Fernandez-Santos, Carmen Vaz-Pardal, Jesus G. Ponce-Gonzalez, Alberto Marin-Galindo, and Aurelio Arnedillo. 2021. "Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD" International Journal of Environmental Research and Public Health 18, no. 8: 4207. https://doi.org/10.3390/ijerph18084207
APA StyleGonzalez-Montesinos, J. L., Fernandez-Santos, J. R., Vaz-Pardal, C., Ponce-Gonzalez, J. G., Marin-Galindo, A., & Arnedillo, A. (2021). Effects of a Rehabilitation Programme Using a Nasal Inspiratory Restriction Device in COPD. International Journal of Environmental Research and Public Health, 18(8), 4207. https://doi.org/10.3390/ijerph18084207