Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes
Abstract
:1. Introduction
2. Endophytes
2.1. Fungal Endophytes
2.2. Bacterial Endophytes
2.3. Mode of Action of Endophytes
2.3.1. Direct Mechanisms
2.3.2. Indirect Mechanisms
3. Endophytes as Bionematicides
3.1. Vegetable Crops
3.2. Fruit Crops
3.3. Tuber Crops
3.4. Ornamental Crops
3.5. Plantation Crops
3.6. Agricultural Crops
3.7. Fodder Crops
3.8. Forestry
4. Metabolites from Endophytes
5. Commercialization
6. Constraints and Future Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palomares-Rius, J.E.; Escobar, C.; Cabrera, J.; Vovlas, A.; Castillo, P. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front. Plant Sci. 2017, 8, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita, and structure–activity considerations. Pest Manag. Sci. 2016, 72, 125–130. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H. Impact of phytonematodes on agriculture economy. In Biocontrol Agents of Phytonematodes; Askary, T.H., Martinelli, P.R.P., Eds.; CAB International: Wallingford, UK, 2015; pp. 3–49. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Dijkstra, J.; de Jager, C.P. Virus transmission by nematodes. In Practical Plant Virology: Protocols and Excercises; Dijkstra, J., de Jager, C.P., Eds.; Springer: Berlin, Germany, 1998; pp. 128–142. [Google Scholar]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Munif, A.; Harni, R. Management of endophytic bacteria and organic material for the biological control of yellowing disease on pepper. IOP Conf. Ser. Earth Environ. Sci. 2020, 418, 012052. [Google Scholar] [CrossRef]
- Davies, K.G.; Srivastava, A.; Kumar, K.K.; Mohan, S. Understanding nematode suppressive soils: Molecular interactions between Pasteuria endospores and the nematode surface coat. In Proceedings of the 4th Symposium of Potato Cyst Nematode Management (including Other Nematode Parasites of Potatoes), Newport, UK, 7–8 September 2015; Association of Applied Biologists: Wellesbourne, UK, 2015. [Google Scholar]
- Li, J.; Zou, C.; Xu, J.; Ji, X.; Niu, X.; Yang, J.; Huang, X.; Zhang, K.-Q. Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2015, 53, 67–95. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.P.D.; Medeiros, F.H.V.; Campos, V.P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Topalovi´c, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdejo-Lucas, S.; Sorribas, F.J.; Ornat, C.; Galeano, M. Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol. 2003, 52, 521–528. [Google Scholar] [CrossRef]
- Affokpon, A.; Coyne, D.L.; Htay, C.C.; Agbèdè, R.D.; Lawouin, L.; Coosemans, J. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem. 2011, 43, 600–608. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Curto, G.; Dallavalle, E.; Ciancio, A.; Colagiero, M.; Pietrantonio, L.; Bireescu, G.; Stoleru, V.; Storari, M. Effect of Pochonia chlamydosporia-based formulates on the regulation of root-knot nematodes and plant growth response. Front. Life Sci. 2016, 9, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Wepuhkhulu, M.; Kimenju, J.; Anyango, B.; Wachira, P.; Kyallo, G. Effect of soil fertility management practices and Bacillus subtilis on plant parasitic nematodes associated with common bean, Phaseolus vulgaris. Trop. Subtrop. Agroecosyst. 2011, 13, 27–34. [Google Scholar]
- Kokalis-Burelle, N. Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. J. Nematol. 2015, 47, 207. [Google Scholar] [PubMed]
- Zhao, D.; Zhao, H.; Zhao, D.; Zhu, X.; Wang, Y.; Duan, Y.; Xuan, Y.; Chen, L. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control 2018, 119, 12–19. [Google Scholar] [CrossRef]
- Zhang, S.W.; Gan, Y.T.; Xu, B.L.; Xue, Y.Y. The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol. Control 2014, 72, 1–8. [Google Scholar] [CrossRef]
- Mazzuchelli, R.D.C.L.; Mazzuchelli, E.H.L.; de Araujo, F.F. Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biol. Control 2020, 143, 104185. [Google Scholar] [CrossRef]
- Sikora, R.A.; Schafer, K.; Dababat, A.A. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Aust. Plant Pathol. 2007, 36, 124–134. [Google Scholar] [CrossRef]
- Yadav, A.N. Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci. Agric. 2019, 3, 91–93. [Google Scholar]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, fiw194. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hanlon, K.A.; Knorr, K.; Jorgensen, L.N.; Nicolaisen, M.; Boelt, B. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biol. Control 2012, 63, 69–78. [Google Scholar] [CrossRef]
- Santangelo, J.S.; Turley, N.E.; Johnson, M.T. Fungal endophytes of Festuca rubra increase in frequency following long term exclusion of rabbits. Botany 2015, 93, 233–241. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsche, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- De Silva, N.I.; Lumyong, S.; Hyde, K.D.; Bulgakov, T.; Phillips, A.J.L.; Yan, J.Y. Mycosphere essays 9: Defining biotrophs and hemibiotrophs. Mycosphere 2016, 7, 545–559. [Google Scholar] [CrossRef]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seed borne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.S.; Hyde, K.D.; Damm, U.; Cai, L.; Liu, M.; Li, X.H.; Zhang, W.; Zhao, W.S.; Yan., J.Y. Notes on currently accepted species of Colletotrichum. Mycosphere 2016, 7, 1192–1260. [Google Scholar] [CrossRef]
- Alabouvette, C.; Couteaudier, Y. Biological control of Fusarium wilts with nonpathogenic Fusaria. In Biological Control of Plant Diseases. NATO ASI Series (Series A: Life Sciences); Tjamos, E.C., Papavizas, G.C., Cook, R.J., Eds.; Springer: Boston, MA, USA, 1992; pp. 415–426. [Google Scholar]
- Hallmann, J.; Sikora, R.A. Influence of F. oxysporum, a mutualistic fungal endophyte, on M. incognita of tomato. J. Plant Dis. Protect. 1994, 101, 475–481. [Google Scholar]
- Griesbach, M. Occurrence of Mututalistic Fungal Endophytes in Bananas (Musa spp.) and Their Potential as Biocontrol Agents of Banana Weevil (Germar) in Uganda. Ph.D. Thesis, University of Bonn, Bonn, Germany, 1999. [Google Scholar]
- Dababat, A.E.F.A.; Sikora, R.A. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 2007, 9, 771–776. [Google Scholar]
- Bogner, C.W.; Kariuki, G.M.; Elashry, A.; Sichtermann, G.; Buch, A.K.; Mishra, B.; Thines, M.; Grundler, F.M.W.; Schouten, A. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Progress 2016, 15, 30. [Google Scholar] [CrossRef]
- Niere, B.I. Significance of Non-Pathogenic Isolates of Fusarium oxysporum Schlecht: Fries for the Biological Control of the Burrowing Nematode Radopholus similis (Cobb) Thorne on Tissue Cultured Banana. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2001. [Google Scholar]
- Felde, A.Z.; Pocasangre, L.E.; Carnizares Monteros, C.A.; Sikora, R.A.; Rosales, F.E.; Riveros, A.S. Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. InfoMusa 2006, 15, 12–18. [Google Scholar]
- Mwaura, P.; Dubois, T.; Losenge, T.; Coyne, D.; Kahangi, E. Effect of endophytic Fusarium oxysporum on paralysis and mortality of Pratylenchus goodeyi. Afr. J. Biotechnol. 2010, 9, 1130–1134. [Google Scholar]
- Menjivar, R.D.; Hagemann, M.H.; Kranz, J.; Cabrera, J.A.; Dababat, A.A.; Sikora, R.A. Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. Int. J. Pest Manag. 2011, 57, 249–253. [Google Scholar] [CrossRef]
- Van Dessel, P.; Coyne, D.; Dubois, T.; Waele, D.D.; Franco, J. In vitro nematicidal effect of endophytic Fusarium oxysporum against Radopholus similis, Pratylenchus goodeyi and Helicotylenchus multicinctus. Nematropica 2011, 41, 154–160. [Google Scholar]
- West, C.P.; Izekor, E.; Oosterhuis, D.M.; Robbins., R.T. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 1988, 112, 3–6. [Google Scholar] [CrossRef]
- Kimmons, C.A.; Quinn, K.D.; Bernard, E.C. Nematode reproduction on endophyte infected and endophyte-free tall rescue. Plant Dis. 1990, 74, 757–761. [Google Scholar] [CrossRef]
- Elmi, A.A.; West, C.P.; Robbins, R.T.; Kirkpatrick, T.L. Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 2000, 55, 166–172. [Google Scholar] [CrossRef]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef] [Green Version]
- Munif, A.; Hallmann, J.; Sikora, R.A. Evaluation of the biocontrol activity of endophytic bacteria from tomato against Meloidogyne incognita. Meded. Fac. Landbouwkund. EnToegepaste Biol. Wet. Univ. Gent. 2000, 65, 471–480. [Google Scholar]
- Mekete, T.; Hallmann, J.; Kiewnick, S.; Sikora, R. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonize Meloidogyne incognita. Nematology 2009, 11, 117–127. [Google Scholar]
- Vetrivelkalai, P.; Sivakumar, M.; Jonathan, E.I. Biocontrol potential of endophytic bacteria on Meloidogyne incognita and its effect on plant growth in bhendi. J. Biopestic. 2010, 3, 452–457. [Google Scholar]
- Yan, X.-N.; Sikora, R.A.; Zheng, J.-W. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) 2011, 12, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinuz, A.; Schouten, A.; Sikora, R.A. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 2013, 58, 95–104. [Google Scholar] [CrossRef]
- Munif, A.; Hallmann, J.; Sikora, R.A. The influence of endophytic bacteria on Meloidogyne incognita infection and tomato plant growth. J. ISSAAS 2013, 19, 68–74. [Google Scholar]
- Amin, N. The use of fungal endophytes Gliocladium spp. in different concentration to control of root-knot nematode Meloidogyne spp. Acad. Res. Int. 2014, 5, 91–95. [Google Scholar]
- Tian, X.; Yao, Y.; Chen, G.; Mao, Z.; Wang, X.; Xie, B. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest Manag. 2014, 60, 239–245. [Google Scholar] [CrossRef]
- Hu, H.; Chen, Y.; Wang, Y.; Tang, Y.; Chen, S.; and Yan, S. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Dis. 2017, 101, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Vetrivelkalai, P. Evaluation of endophytic bacterial isolates against root knot nematode, Meloidogyne incognita in tomato under glasshouse condition. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2584–2589. [Google Scholar] [CrossRef]
- Pocasangre, L. Biological Enhancement of Banana Tissue Culture Plantlets with Endophytic Fungi for the Control of the Burrowing Nematode Radopholus similis and the Panama Disease (Fusarium oxysporum f. sp. cubense). Ph.D. Thesis, University of Bonn, Bonn, Germany, 2000. [Google Scholar]
- Dubois, T.; Gold, C.S.; Coyne, D.; Paparu, P.; Mukwaba, E.; Athman, S.; Kapindu, S.; Adipala, E. Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic fungi. Uganda J. Agric. Sci. 2004, 9, 445–451. [Google Scholar]
- Jonathan, E.I.; Umamaheswari, R. Biomanagement of nematodes infesting banana by bacterial endophytes (Bacillus subtilis). Indian J. Nematol. 2006, 36, 6303–6960. [Google Scholar]
- Vu, T.; Sikora, R.; Hauschild, R. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 2006, 8, 847–852. [Google Scholar] [CrossRef]
- Viljoen, A.; Labuschagne, N.; Dubois, T.; Athman, S.; Coyne, D.; Gold, C.S. Effect of endophytic Fusarium oxysporum on root penetration and reproduction of Radopholus similis in tissue culture-derived banana (Musa spp.) plants. Nematology 2007, 9, 599–607. [Google Scholar] [CrossRef]
- Mendoza, A.R.; Sikora, R.A. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 2009, 54, 263–272. [Google Scholar] [CrossRef]
- Waweru, B.W.; Losenge, T.; Kahangi, E.M.; Dubois, T.; Coyne, D. Potential biological control of lesion nematodes on banana using Kenyan strains of endophytic Fusarium oxysporum. Nematology 2013, 15, 101–107. [Google Scholar] [CrossRef]
- Su, L.; Shen, Z.; Ruan, Y.; Tao, C.; Chao, Y.; Li, R.; Shen, Q. Isolation of antagonistic endophytes from banana roots against Meloidogyne javanica and their effects on soil nematode community. Front. Microbiol. 2017, 8, 2070. [Google Scholar] [CrossRef]
- Hallmann, J.; Quadt-Hallmann, A.; Miller, W.G.; Sikora, R.A.; Lindow, S.E. Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 2001, 91, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifonova, Z.; Tsvetkov, I.; Bogatzevska, N.; Batchvarova, R. Efficiency of Pseudomonas spp. for biocontrol of the potato cyst nematode Globodera rostochiensis (Woll.). Bulg. J. Agric. Sci. 2014, 20, 666–669. [Google Scholar]
- Istifadah, N.; Pratama, N.; Taqwim, S.; Sunarto, T. Effects of bacterial endophytes from potato roots and tubers on potato cyst nematode (Globodera rostochiensis). Biodiversitas 2018, 19, 47–51. [Google Scholar] [CrossRef]
- Muhae-ud-Din, G.; Moosa, A.; Ghummen, U.F.; Jabran, M.; Abbas, A.; Naveed, M.; Jabbar, A.; Ali, M.A. Host status of commonly planted ornamentals to Meloidogyne incognita and management through endophytic bacteria. Pak. J. Zool. 2018, 50, 1393–1402. [Google Scholar] [CrossRef]
- Aravind, R.; Eapen, S.J.; Kumar, A.; Dinu, A.; Ramana, K.V. Screening of endophytic bacteria and evaluation of selected isolates for suppression of burrowing nematode (Radopholus similis Thorne) using three varieties of black pepper (Piper nigrum L.). Crop Prot. 2010, 29, 318–324. [Google Scholar] [CrossRef]
- Tran, T.P.H.; Wang, S.-L.; Nguyen, V.B.; Tran, D.M.; Nguyen, D.S.; Nguyen, A.D. Study of novel endophytic bacteria for biocontrol of black pepper root-knot nematodes in the central highlands of Vietnam. Agronomy 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Hoang, H.; Tran, L.H.; Nguyen, T.H.; Nguyen, D.A.T.; Nguyen, H.H.T.; Pham, N.B.; Trinh, P.Q.; de Boer, T.; Brouwer, A.; Chu, H.H. Occurrence of endophytic bacteria in Vietnamese robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis 2020, 80, 75–84. [Google Scholar] [CrossRef]
- Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.F.; Kloepper, J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914. [Google Scholar] [CrossRef]
- Padgham, J.L.; Sikora, R.A. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protect. 2007, 26, 971–977. [Google Scholar] [CrossRef]
- Le, H.T.T.; Padgham, J.L.; Sikora, R.A. Biological control of the rice rootknot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi, Int. J. Pest Manag. 2009, 55, 31–36. [Google Scholar]
- Le, H.T.T.; Padgham, J.L.; Hagemann, M.H.; Sikora, R.A.; Schouten, A. Developmental and behavioural effects of the endophytic Fusarium moniliforme Fe14 towards Meloidogyne graminicola in rice. Ann. Appl. Biol. 2016, 169, 134–143. [Google Scholar] [CrossRef]
- Timper, P.; Gates, R.N.; Bouton, J. Response of Pratylenchus spp. in tall fescue infected with different strains of the fungal endophyte Neotyphodium coenophialum. Nematology 2005, 7, 105–110. [Google Scholar] [CrossRef]
- Rogers, J.K.; Walker, N.R.; Young, C.A. The effect of endophytic fungi on nematode populations in summer-dormant and summer-active tall fescue. J. Nematol. 2016, 48, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ponpandian, L.N.; Kim, H.; Jeon, J.; Hwang, B.S.; Lee, S.K.; Park, S.-C.; Bae, H. Distribution and diversity of bacterial endophytes from four Pinus species and their efficacy as biocontrol agents for devastating pine wood nematodes. Sci. Rep. 2019, 9, 12461. [Google Scholar] [CrossRef] [Green Version]
- Munif, A.; Mulyadisastra, S.; Herliyana, E.N.; Pradana, A.P. Endophytic bacterial consortium originated from forestry plant roots and their nematicidal activity against Meloidogyne incognita infestation in greenhouse. Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Ponpandian, L.N.; Rim, S.O.; Shanmugam, G.; Jeon, J.; Park, Y.-H.; Lee, S.-K.; Bae, H. Phylogenetic characterization of bacterial endophytes from four Pinus species and their nematicidal activity against the pine wood nematode. Sci. Rep. 2019, 9, 12457. [Google Scholar] [CrossRef] [PubMed]
- Zinniel, D.K.; Lambrecht, P.; Harris, N.B.; Feng, Z.; Kuczmarski, D.; Higley, P.; Ishimaru, C.A.; Arunakumari, A.; Barletta, R.G.; Vidaver, A.K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Env. Microbiol. 2002, 68, 2198–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, Z.A.; Mahmood, I. Role of bacteria in the management of plant parasitic nematodes: A review. Bioresour. Technol. 1999, 69, 167–179. [Google Scholar] [CrossRef]
- Kobayashi, D.Y.; Palumbo, J.D. Bacterial endophytes and their effects on plants and uses in agriculture. In Microbial Endophytes; Bacon, C.W., White, J., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 199–233. [Google Scholar]
- Yadav, A.N.; Verma, P.; Kour, D.; Rana, K.L.; Kumar, V.; Singh, B.; Chauahan, V.S.; Sugitha, T.; Saxena, A.K.; Dhaliwal, H.S. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int. J. Environ. Sci. Nat. Resour. 2017, 3, 1–8. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Llorca, L.V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 2012, 57, 33–42. [Google Scholar] [CrossRef]
- Schouten, A. Mechanisms involved in nematode control by endophytic fungi. Annu. Rev. Phytopathol. 2016, 54, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional Prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.; Zhao, S.; Cao, L.; Rajput, N.A.; Ye, Y. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, fnz169. [Google Scholar] [CrossRef]
- Hasky-Gunther, K.; Sikora, R.A. Induced resistance: A mechanism induced systemically throughout the root system by rhizosphere bacteria towards the potato cyst nematode Globodera pallida. Nematologica 1995, 41, 306. [Google Scholar]
- Schafer, K. Dissecting Rhizobacteria-Induced Systemic Resistance in Tomato against Meloidogyne incognita: The First Step Using Molecular Tools. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany, 2007. [Google Scholar]
- Zhao, J.; Wang, S.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y.; Fan, H.; Chen, L. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb 1997 and Serratia plymuthica Sneb 2001 for the biological control of root-knot nematode. Appl. Soil Ecol. 2021, 164, 103924. [Google Scholar] [CrossRef]
- Kumar, V.; Sarma, M.V.R.K.; Saharan, K.; Srivastava, R.; Kumar, L.; Sahai, V.; Bisaria, V.S.; Sharma, A.K. Effect of formulated root endophytic fungus Piriformospora indica and plant growth promoting rhizobacteria fluorescent pseudomonads R62 and R81 on Vigna mungo. World J. Microbiol. Biotechnol. 2012, 28, 595–603. [Google Scholar] [CrossRef]
- Varkey, S.; Anith, K.N.; Narayana, R.; Aswini, S. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere 2018, 5, 38–42. [Google Scholar] [CrossRef]
- Soler, A.; Marie-Alphonsine, P.A.; Quénéhervé, P.; Prin, Y.; Sanguin, H.; Tisseyre, P.; Daumur, R.; Pochat, C.; Dorey, E.; Rodriguez, R.G.; et al. Field management of Rotylenchulus reniformis on pineapple combining crop rotation, chemical-mediated induced resistance and endophytic bacterial inoculation. Crop Protec. 2021, 141, 105446. [Google Scholar] [CrossRef]
- Hasky-Günther, K.; Hoffmann-Hergarten, S.; Sikora, R.A. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fund. Appl. Nematol. 1998, 21, 511–517. [Google Scholar]
- Strom, N.; Hu, W.; Haarith, D.; Chen, S.; Bushley, K. Corn and soybean host root endophytic fungi with toxicity toward the soybean cyst nematode. Phytopathology 2020, 110, 603–614. [Google Scholar] [CrossRef]
- Korkina, L.G. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 2007, 53, 15–25. [Google Scholar] [PubMed]
- Bogner, C.W.; Kamdem, R.S.T.; Sichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.W.; Schouten, A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017, 10, 175–188. [Google Scholar] [CrossRef]
- Koepcke, B.; Johansson, M.; Sterner, O.; Anke, H. Biologically active secondary metabolites from the ascomycete A111-95 1. Production, isolation and biological activities. J. Antibiot. 2002, 55, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, M.; Köpcke, B.; Weber, R.W.; Sterner, O.; Anke, H. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Yu, Z.F.; Li, X.; Wang, X.B.; Zheng, L.J.; Zhang, K.Q. Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem. Biodivers. 2007, 4, 1520–1524. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.R.; Son, S.W.; Han, H.R.; Choi, G.J.; Jang, K.S.; Choi, Y.H.; Lee, S.; Sung, N.-D.; Kim, J.C. Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol. J. 2007, 23, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Li, G.; Wang, X.; Pan, W.; Li, L.; Hua, L.; Liu, F.; Dang, L.; Mo, M.; Zhang, K. Nematicidal endophytic bacteria obtained from plants. Ann. Microbiol. 2008, 58, 569–572. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of chaetoglobosin A poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Liarzi, O.; Bucki, P.; Braun Miyara, S.; Ezra, D. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 2016, 11, e0168437. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Shaukat, S.S. Endophytic bacteria: Prospects and opportunities for the biological control of plant-parasitic nematodes. Nematol. Mediterr. 2003, 31, 111–120. [Google Scholar]
- Hallmann, J.; Davies, K.G.; Sikora, R. Biological control using microbial pathogens, Endophytes and antagonists. In Root Knot Nematodes; Perry, R.N., Moens, M., Starr, J.L., Eds.; CAB International: Wallingford, UK, 2009; pp. 380–411. [Google Scholar]
- Rabiey, M.; Hailey, L.E.; Roy, S.R.; Grenz, K.; Al-Zadjali, M.A.S.; Barrett, G.A.; Jackson, R.W. Endophytes vs tree pathogens and pests: Can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019, 155, 711–729. [Google Scholar] [CrossRef] [Green Version]
- Dara, S.K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef] [Green Version]
PPN Species | Crop | Endophytic Organism | Effect on PPN | References |
---|---|---|---|---|
Vegetable crops | ||||
Meloidogyne incognita | Tomato | Pantoe agglomerans (MK-29), Cedecea davisae (MK-30), Enterobacter intermedius (MK-42), Pseudomonas putida (MT-19), P. putida (MT-04), Pseudomonas fluorescens (MK-35) | Reduced the number of galls by 27–43% after soil drench application and reduced nematode infestation as a seed treatment | [46] |
M. incognita | Tomato | F. oxysporum (strain 162) | Reduced nematode penetration by 36–56% | [35] |
M. incognita | Tomato | Agrobacterium radiobacter, Bacillus pumilus, B. brevis, B. megaterium, B. mycoides, B. licheniformis, Chryseobacterium balustinum, Cedecea davisae, Cytophaga johnsonae, Lactobacillus paracasei, Micrococcus luteus, Micrcoccus halobius, Pseudomonas syringae and Stenotrophomonas maltophilia. | Reduced the number of galls and egg masses by 33 and 39% | [47] |
M. incognita | Bhendi | Pseudomonas spp. (EB3) Bacillus spp. (EB16, EB18), Methlobacterium spp. (EB19) | Reduced the number of adult females, egg masses, eggs per egg mass and lowered root gall index | [48] |
M. incognita | Cucumber | Phyllosticta (Ph5110), Chaetomium (Ch1001), Acremonium (Ac985), Paecilomyces (Pa972) | Reduced the number of galls by 24–58% in the first screening and 15.6–44.3% in the repeated test. Chaetomium showed the highest potential for seed treatment against M. incognita | [49] |
M. incognita | Tomato | Fusarium oxysporum (Fo162); Rhizobium etli (G12) | Reduced the number of eggs per female 35 days after nematode inoculation | [50] |
M. incognita | Tomato | P. agglomerans (MK-29), C. davisae (MK-30), Enterobacter spp. (MK-42), P. putida (MT-19) | Reduced early root penetration of J2s into roots up to 56% when applied as a root dip and soil drench; Reduced the number of galls by seed treatment with endophytic bacteria followed by soil drench application | [51] |
Meloidogyne spp. | Tomato | Gliocladium spp. | Significant decrease in damage intensity to 33% by inoculating conidial suspension at the rate of 106 mL−1 | [52] |
M. incognita | Tomato | Acremonium implicatum | 96.0% of J2s were killed by a culture filtrate after 48 h; Formation of root galls was inhibited in potted plants and root gall index was reduced in the field | [53] |
M. incognita | Tomato | F. oxysporum; F. solani; Trichoderma asperellum | Reduced nematode penetration; T. asperellum and F. oxysporum isolates reduced nematode egg densities by 35–46% | [36] |
M. incognita | Tomato | Bacillus cereus (BCM2) | Reduced gall and egg mass indexes | [54] |
M. incognita | Tomato | Bacillus sp. (EB16, EB18) Methylobacterium sp. (EB19) Pseudomonas sp. (EB3) | Reduced the number of adult females, egg masses, eggs per eggmass, soil and root population of M. incognita | [55] |
Fruit crops | ||||
Radopholus similis | Banana | Fusarium | Reduced the number of J2s per gram root by >80% | [56] |
R. similis | Banana | F. oxysporum | Reduced nematode population density on tissue culture plantlets by 49–79% | [37] |
R. similis | Banana | Fusarium spp. (V5w2) | Decreased nematode reproduction by 22.9 and 60.6% in cultivars, Enyeru and Kibuzi respectively | [57] |
M. incognita, Pratylenchus coffeae, R. similis, Helicotylenchus multicinctus | Banana | Bacillus subtilis (EPB 5, 22, 31 and EPC 16) Talc based | Reduced nematode population in the combined treatment of EPB 5+31 | [58] |
R. similis | Banana | F. oxysporum (S9, P12) | 63% reduction in R. similis population in root system | [38] |
R. similis | Banana | F. oxysporum | Pre-inoculation of banana plantlets on one half of the root system significantly reduced root penetration of J2s on the non-treated half of the root by 30–40% | [59] |
R. similis | Banana | F. oxysporum (V5w2) | Disrupted nematode reproduction | [60] |
R. similis | Banana | F. oxysporum (strain 162), Paecilomyces lilacinus (strain 251), Bacillus firmus | Reduced nematode density by 68% after combined application of F. oxysporum and P. lilacinus; Application of F. oxysporum and B. firmus resulted in reduced J2 density by 86.2% | [61] |
Pratylenchus goodeyi | Banana | F. oxysporum | Increased paralysis and mortality of motile stages by 17–26% and 62–73% respectively | [39] |
M. incognita | Squash and melon | F. oxysporum (strain 162) | Reduced early root penetration of J2s in squash and melon up to 69 and 73%, respectively | [40] |
R. similis, P. goodeyi, H. multicinctus | Banana | F. oxysporum | Higher nematode mortality after 24 h exposure to culture filtrates; H. multicinctus was less sensitive to culture filtrates than R. similis and P. goodeyi | [41] |
P. goodeyi | Banana | F. oxysporum (4MOC321, 11SR23) | Significant reduction of P. goodeyi population by >50% and percentage root necrosis was reduced by >30% | [62] |
M. javanica | Banana | Streptomyces sp. | Inhibition rate of >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against J2s | [63] |
Tuber crops | ||||
M. incognita | Potato | R. etli (G12) | The no. of galls on roots was 34% lower than control | [64] |
Globodera rostochiensis | Potato | P. fluorescens, P. putida 3, P. syxantha, P. aurantiacea 13 | Reduced nematode multiplication by 40.7–42.2% over the control with P. putida 3 and P. aurantiacea 13 respectively | [65] |
G. rostochiensis | Potato | Bacillus carotarum, B. cereus, and Pseudomonas pseudoalcaligenes | Increased the mortality of J2s by 67–97%; No effect on eggs; suppressed the number of cysts by 51–65% and J2s by 48–76% in greenhouse experiment | [66] |
Ornamental crops | ||||
M. incognita | Ornamentals | P. agglomerans (MN34); P. putida 9MN12) | Decreased galling index | [67] |
Plantation crops | ||||
R. similis | Black pepper | Bacillus megaterium (BP 17) and Curtobacterium luteum (TC 10) | Higher nematode suppression with C. luteum followed by B. megaterium | [68] |
Meloidogyne sp. | Black pepper | B. megaterium (DS9) | Reduced nematode population with great inhibition values of 81 and 73% | [69] |
Meloidogyne spp.; Pratylenchus spp.; Apratylenchus spp.; Criconemella spp.; Xiphinema spp.; Rotylenchulus spp. | Coffee | Bacillus spp., Serratia spp., Paenibacillus spp., Enterobacter spp. and Streptomyces spp. (CBG9) | Streptomyces sp. showed inhibited egg hatching by 85% and mortality of M. incognita J2s by 85% | [70] |
M. incognita; R. similis | Black pepper | AA2, MER7, ANIC, TT2, MER9, HEN1, EH11, TT2 | Reduced the number of root galls by 30–91%; reduced nematode population in the soil by 15–99% | [7] |
Agricultural crops | ||||
M. incognita | Cotton | Reduced 30–50% of root galls by seed treatment application | [71] | |
Meloidogyne graminicola | Rice | Bacillus megaterium | Reduced nematode penetration and gall formation by >40% | [72] |
M. graminicola | Rice | Fusarium spp. | Reduced root-galling by 29–42% and increased root weight by 33% | [73] |
M. incognita | Cotton | Chaetomium globosum TAMU 520 | Inhibited nematode infection and reduced female production | [45] |
M. graminicola | Rice | Fusarium moniliforme Fe14 | Reduced J2 penetration into roots by 55% and increased male to female ratio by nine times. | [74] |
Fodder crops | ||||
Pratylenchus scribneri | Tall fescue | Epichloe coenophiala | Reduced nematode population | [42] |
Meloidogyne marylandi | Tall fescue | E. coenophiala | Reduced the emergence of J2s, number of egg masses per pot and the number of eggs per egg mass | [43,44] |
P. scribneri; Helicotylenchus pseudorobustus; M. marylandi | Tall fescue | E. coenophiala | Hinderance in reproduction of the nematodes | [43] |
Pratylenchus spp. | Tall fescue | E. coenophiala | Non-ergot strain AR584 confer resistance in cv. Georgia 5 | [75] |
Tylenchorhynchus spp., Criconemella spp., Helicotylenchus spp.; Pratylenchus spp. | Tall fescue | E. coenophiala (AR584; AR542; AR502) | No effect on nematode population densities | [76] |
Forest trees | ||||
Bursaphelenchus xylophilus | Pine trees | Escherichia coli (M131, M132) Serratia marcescens (M44) | E. coli and S. marcescens showed significant nematicidal activity (67 and 60% mortality) respectively | [77] |
M. incognita | Shorea sp.; Swietenia sp.; Albizia falcataria; Anthocephalus cadamba; Juglans nigra | Bacterial isolates | Inhibited egg hatching up to 81% and mortality up to 85% | [78] |
B. xylophilus | Pine trees | Stenotrophomonas and Bacillus sp. | Significant inhibitory activity against PWN during their developmental stages | [79] |
Metabolite | Bacteria/Fungi | Nematode | References |
---|---|---|---|
Pregaliellalactone | Galiella rufa | Meloidogyne incognita | [98] |
3-Hydroxypropionic acid | Endophytic fungi | M. incognita | [99] |
Chlorinated oxazinane derivate (1-[(2R*,4S*,5S*)-2-chloro-4-methyl-1,3-oxazinan-5-yl] ethenone) and an epimer of the former (1-[(2R*,4S*,5R*)-2-chloro-4-methyl-1,3-oxazinan-5-yl] ethanone) | Geotrichum sp. (AL4) | Bursaphelenchus xylophilus; Panagrellus redivivus | [100] |
Fusaric acid and Bikaverin | Fusarium oxysporum (EF119) | B. xylophilus | [101] |
(R)-(−)-2-ethylhexan-1-ol | Brevundimonas diminuta (LCB-3) | B. xylophilus | [102] |
Chaetoglobosin A | Chaetomium globosum (NK102) | M. incognita | [103] |
3-methyl-1-butanol, (±)-2-methyl-1-butanol, 4-heptanone, and isoamyl acetate | Daldinia cf. concentrica | Meloidogyne javanica | [104] |
4-hydroxybenzoic acid, indole- 3-acetic acid and gibepyrone D | F. oxysporum (162) | M. incognita | [97] |
Chaetoglobosin A, chaetoglobosin B and flavipin | C. globosum (YSC5) | M. javanica | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.K.; Dara, S.K. Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. Int. J. Environ. Res. Public Health 2021, 18, 4269. https://doi.org/10.3390/ijerph18084269
Kumar KK, Dara SK. Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. International Journal of Environmental Research and Public Health. 2021; 18(8):4269. https://doi.org/10.3390/ijerph18084269
Chicago/Turabian StyleKumar, K. Kiran, and Surendra K. Dara. 2021. "Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes" International Journal of Environmental Research and Public Health 18, no. 8: 4269. https://doi.org/10.3390/ijerph18084269
APA StyleKumar, K. K., & Dara, S. K. (2021). Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. International Journal of Environmental Research and Public Health, 18(8), 4269. https://doi.org/10.3390/ijerph18084269