Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participant Recruitment
2.3. Data Collection
2.4. Independent Variable: Neighborhood Deprivation Index
2.5. Dependent Variable: Trimethylamine-N-Oxide
2.6. Covariates
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Role of Inflammation in NDI and TMAO
4.2. Role of Neighborhood Factors
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diez Roux, A.V.; Mujahid, M.S.; Hirsch, J.A.; Moore, K.; Moore, L.V. The Impact of Neighborhoods on CV Risk. Glob Heart 2016, 11, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, S.; Hickson, D.A.; Wang, X.; Sims, M.; Nelson, C.; Diez-Roux, A.V. Neighborhood Disadvantage, Poor Social Conditions, and Cardiovascular Disease Incidence Among African American Adults in the Jackson Heart Study. Am. J. Public Health 2016, 106, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Wing, J.J.; August, E.; Adar, S.D.; Dannenberg, A.L.; Hajat, A.; Sánchez, B.N.; Stein, J.H.; Tattersall, M.C.; Roux, A.V.D. Change in Neighborhood Characteristics and Change in Coronary Artery Calcium: A Longitudinal Investigation in the MESA (Multi-Ethnic Study of Atherosclerosis) Cohort. Circulation 2016, 134, 504–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, K.N.; Osypuk, T.L.; Do, D.P.; De Chavez, P.J.; Diez Roux, A.V. Neighborhood-level racial/ethnic residential segregation and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. Circulation 2015, 131, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, R.C.; Ismond, D.; Rodriquez, E.J.; Kaufman, J.S. Social Determinants of Health: Future Directions for Health Disparities Research. Am. J. Public Health 2019, 109, S70–S71. [Google Scholar] [CrossRef]
- Havranek, E.P.; Mujahid, M.S.; Barr, D.A.; Blair, I.V.; Cohen, M.S.; Cruz-Flores, S.; Davey-Smith, G.; Dennison-Himmelfarb, C.R.; Lauer, M.S.; Lockwood, D.W.; et al. Social Determinants of Risk and Outcomes for Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2015, 132, 873–898. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.R.; Collins, C. Racial residential segregation: A fundamental cause of racial disparities in health. Public Health Rep. 2001, 116, 404–416. [Google Scholar] [CrossRef]
- Diez Roux, A.V. Estimating neighborhood health effects: The challenges of causal inference in a complex world. Soc. Sci. Med. 2004, 58, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Byrd, D.A.; Carson, T.L.; Williams, F.; Vogtmann, E. Elucidating the role of the gastrointestinal microbiota in racial and ethnic health disparities. Genome Biol. 2020, 21, 192. [Google Scholar]
- Stamper, C.E.; Hoisington, A.J.; Gomez, O.M.; Halweg-Edwards, A.L.; Smith, D.G.; Bates, K.L.; Kinney, K.A.; Postolache, T.T.; Brenner, L.A.; Rook, G.A.; et al. The Microbiome of the Built Environment and Human Behavior: Implications for Emotional Health and Well-Being in Postmodern Western Societies. Int. Rev. Neurobiol. 2016, 131, 289–323. [Google Scholar] [PubMed]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Cubbin, C.; Winkleby, M.A. Protective and harmful effects of neighborhood-level deprivation on individual-level health knowledge, behavior changes, and risk of coronary heart disease. Am. J. Epidemiol. 2005, 162, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.I.; Fraga, S.; Kelly-Irving, M.; Delpierre, C.; Stringhini, S.; Kivimaki, M.; Joost, S.; Guessous, I.; Gandini, M.; Vineis, P.; et al. Neighbourhood socioeconomic deprivation and allostatic load: A multi-cohort study. Sci. Rep. 2019, 9, 8790. [Google Scholar] [CrossRef] [Green Version]
- Keita, A.D.; Judd, S.E.; Howard, V.J.; Carson, A.P.; Ard, J.D.; Fernandez, J.R. Associations of neighborhood area level deprivation with the metabolic syndrome and inflammation among middle- and older- age adults. BMC Public Health 2014, 14, 1319. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Nelesen, R.A.; Krohn, P.L.; Mills, P.J.; Dimsdale, J.E. The Association of Social Status and Blood Pressure with Markers of Vascular Inflammation. Psychosom. Med. 2006, 68, 517–523. [Google Scholar] [CrossRef]
- Petersen, K.L.; Marsland, A.L.; Flory, J.; Votruba-Drzal, E.; Muldoon, M.F.; Manuck, S.B. Community socioeconomic status is associated with circulating interleukin-6 and C-reactive protein. Psychosom. Med. 2008, 70, 646–652. [Google Scholar] [CrossRef]
- Holmes, L.M.; Marcelli, E.A. Neighborhoods and systemic inflammation: High CRP among legal and unauthorized Brazilian migrants. Health Place 2012, 18, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M.; Gebreab, S.Y.; Claudel, S.E.; Ayers, C.; Andrews, M.R.; Adu-Brimpong, J.; Berrigan, D.; Davis, S.K. The relationship between neighborhood socioeconomic deprivation and telomere length: The 1999–2002 National Health and Nutrition Examination Survey. SSM Popul. Health 2020, 10, 100517. [Google Scholar] [CrossRef]
- Smith, J.A.; Zhao, W.; Wang, X.; Ratliff, S.M.; Mukherjee, B.; Kardia, S.L.R.; Liu, Y.; Roux, A.V.D.; Needham, B.L. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: The Multi-Ethnic Study of Atherosclerosis. Epigenetics 2017, 12, 662–673. [Google Scholar] [CrossRef]
- Elliott, M. The stress process in neighborhood context. Health Place 2000, 6, 287–299. [Google Scholar] [CrossRef]
- Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.I.; Story, M.T.; Nelson, M.C. Neighborhood environments: Disparities in access to healthy foods in the U.S. Am. J. Prev. Med. 2009, 36, 74–81. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Canyelles, M.; Tondo, M.; Cedó, L.; Farràs, M.; Escolà-Gil, J.C.; Blanco-Vaca, F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int. J. Mol. Sci. 2018, 19, 3228. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Fu, B.C.; Hullar, M.A.J.; Randolph, T.W.; Franke, A.A.; Monroe, K.R.; Cheng, I.; Wilkens, L.R.; Shepherd, J.A.; Madeleine, M.M.; Le Marchand, L.; et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am. J. Clin. Nutr. 2020, 111, 1226–1234. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Yingling, L.R.; Mitchell, V.; Ayers, C.R.; Peters-Lawrence, M.; Wallen, G.R.; Brooks, A.T.; Troendle, J.F.; Adu-Brimpong, J.; Thomas, S.; Henry, J.; et al. Adherence with physical activity monitoring wearable devices in a community-based population: Observations from the Washington, D.C.; Cardiovascular Health and Needs Assessment. Transl. Behav. Med. 2017, 7, 719–730. [Google Scholar] [CrossRef]
- Fowler, L.A.; Yingling, L.R.; Brooks, A.T.; Wallen, G.R.; Peters-Lawrence, M.; McClurkin, M.; Wiley, K.L., Jr.; Mitchell, V.M.; Johnson, T.D.; Curry, K.E.; et al. Digital Food Records in Community-Based Interventions: Mixed-Methods Pilot Study. JMIR Mhealth Uhealth 2018, 6, e160. [Google Scholar] [CrossRef]
- Andrews, M.R.; Tamura, K.; Claudel, S.E.; Xu, S.; Ceasar, J.N.; Collins, B.S.; Langerman, S.; Mitchell, V.M.; Baumer, Y.; Powell-Wiley, T.M. Geospatial Analysis of Neighborhood Deprivation Index (NDI) for the United States by County. J. Maps 2020, 16, 101–112. [Google Scholar] [CrossRef]
- Lian, M.; Struthers, J.; Liu, Y. Statistical Assessment of Neighborhood Socioeconomic Deprivation Environment in Spatial Epidemiologic Studies. Open J. Stat. 2016, 6, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Saelens, B.E.; Glanz, K.; Frank, L.D.; Couch, S.C.; Zhou, C.; Colburn, T.; Sallis, J.F. Two-Year Changes in Child Weight Status, Diet, and Activity by Neighborhood Nutrition and Physical Activity Environment. Obesity 2018, 26, 1338–1346. [Google Scholar] [CrossRef]
- Fryer, C.D.; Ervin, R.B. Caloric intake from fast food among adults: United States, 2007–2010. NCHS Data Brief. 2013, 114, 1–8. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 2012, 307, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- Bastarache, J.A.; Koyama, T.; Wickersham, N.E.; Ware, L.B. Validation of a multiplex electrochemiluminescent immunoassay platform in human and mouse samples. J. Immunol. Methods 2014, 408, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Mora, S.; Cook, N.; Buring, J.E.; Ridker, P.M.; Lee, I.M. Physical activity and reduced risk of cardiovascular events: Potential mediating mechanisms. Circulation 2007, 116, 2110–2118. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Post, W.S.; Blasco-Colmenares, E.; Cheng, A.; Zhang, Y.; Deo, R.; Pastor-Barriuso, R.; Michos, E.D.; Sotoodehnia, N.; Guallar, E. Racial Differences in Sudden Cardiac Death. Circulation 2019, 139, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.A.; Benton, T.Z.; Bennett, B.J.; Jacobs, D.R.; Lloyd-Jones, D.M.; Gross, M.D.; Carr, J.J.; Gordon-Larsen, P.; Zeisel, S.H. Microbiota-Dependent Metabolite Trimethylamine N-Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.L.; Zhu, X.H.; Ran, L.; Lang, H.D.; Yi, L.; Mi, M.T. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3;mtROS Signaling Pathway. J. Am. Heart Assoc. 2017, 6, e006347. [Google Scholar] [CrossRef] [PubMed]
- Boutagy, N.E.; Neilson, A.P.; Osterberg, K.L.; Smithson, A.T.; Englund, T.R.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr. Res. 2015, 35, 858–864. [Google Scholar] [CrossRef]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, Z.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.H.; Chen, C.Y.; Chen, I.C.; Huang, H.-L.; Lu, Y.-W.; Kuo, C.-S.; Chang, C.-C.; Huang, P.-H.; Chen, J.-W.; Lin, S.-J. Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina. Sci. Rep. 2019, 9, 4249. [Google Scholar] [CrossRef]
- Rohrmann, S.; Linseisen, J.; Allenspach, M.; von Eckardstein, A.; Müller, D. Plasma Concentrations of Trimethylamine-N-oxide Are Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Din, A.U.; Hassan, A.; Zhu, Y.; Yin, T.; Gregersen, H.; Wang, G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl. Microbiol. Biotechnol. 2019, 103, 9217–9228. [Google Scholar] [CrossRef]
- Petriello, M.C.; Charnigo, R.; Sunkara, M.; Soman, S.; Pavuk, M.; Birnbaum, L.; Morris, A.J.; Hennig, B. Relationship between serum trimethylamine N-oxide and exposure to dioxin-like pollutants. Environ. Res. 2018, 162, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cutrona, C.E.; Wallace, G.; Wesner, K.A. Neighborhood Characteristics and Depression: An Examination of Stress Processes. Curr. Dir. Psychol. Sci. 2006, 15, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Hackman, D.A.; Robert, S.A.; Grübel, J.; Weibel, R.P.; Anagnostou, E.; Hölscher, C.; Schinazi, V.R. Neighborhood environments influence emotion and physiological reactivity. Sci. Rep. 2019, 9, 9498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol. 2011, 62, 591–599. [Google Scholar] [PubMed]
- Galley, J.D.; Mackos, A.R.; Varaljay, V.A.; Bailey, M.T. Stressor exposure has prolonged effects on colonic microbial community structure in Citrobacter rodentium-challenged mice. Sci. Rep. 2017, 7, 45012. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Soldan, M.M.P.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Fujita, Y.; Ren, Q.; Ma, M.; Dong, C.; Hashimoto, K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep. 2017, 7, 45942. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Song, L.; Wang, Y.; Liu, C.; Zhang, L.; Zhu, S.; Liu, S.; Duan, L. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J. Gastroenterol. Hepatol. 2019, 34, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Jivraj, S.; Murray, E.T.; Norman, P.; Nicholas, O. The impact of life course exposures to neighbourhood deprivation on health and well-being: A review of the long-term neighbourhood effects literature. Eur. J. Public Health 2020, 30, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Dong, Y. Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota. Biomed. Res. Int. 2020, 2020, 9896743. [Google Scholar] [CrossRef]
- Conrey, S.; Cline, A.; Brokamp, C.; Santanello, K.; Piasecki, A.; Staat, M.; Payne, D.; Morrow, A. Neighborhood Deprivation Predicts Diet Quality at One Year of Age. Curr. Dev. Nutr. 2020, 4 (Suppl. 2), 173. [Google Scholar] [CrossRef]
- Kurotani, K.; Honjo, K.; Nakaya, T.; Ikeda, A.; Mizoue, T.; Sawada, N.; Tsugane, S. Japan Public Health Center-Based Prospective Study Group. Diet Quality Affects the Association between Census-Based Neighborhood Deprivation and All-Cause Mortality in Japanese Men and Women: The Japan Public Health Center-Based Prospective Study. Nutrients 2019, 11, 2194. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.A.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Manor, O.; Zubair, N.; Conomos, M.P.; Xu, X.; Rohwer, J.E.; Krafft, C.E.; Lovejoy, J.C.; Magis, A.T. A Multi-omic Association Study of Trimethylamine N-Oxide. Cell Rep. 2018, 24, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Sawrey-Kubicek, L.; Bardagjy, A.S.; Houts, H.; Tang, X.; Sacchi, R.; Randolph, J.M.; Steinberg, F.M.; Zivkovic, A.M. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutr. Res. 2020, 78, 36–41. [Google Scholar] [CrossRef]
- Chen, M.L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.-d.; Zhang, Q.-y.; Mi, M.-t. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 2016, 7, e02210–e02215. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.-L.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 2020, 1, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Henderson, A.; Petriello, M.C.; Romano, K.A.; Gearing, M.; Miao, J.; Schell, M.; Sandoval-Espinola, W.J.; Tao, J.; Sha, B.; et al. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metab. 2019, 30, 1141–1151.e1145. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M.; Dey, A.K.; Rivers, J.P.; Chaturvedi, A.; Andrews, M.R.; Ceasar, J.N.; Claudel, S.E.; Mitchell, V.M.; Ayers, C.; Tamura, K.; et al. Chronic Stress-Related Neural Activity Associates With Subclinical Cardiovascular Disease in a Community-Based Cohort: Data from the Washington, D.C. Cardiovascular Health and Needs Assessment. Front. Cardiovasc. Med. 2021, 10, 599341. [Google Scholar] [CrossRef]
- Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex Differ. 2019, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M. Disentangling Ancestry From Social Determinants of Health in Hypertension Disparities—An Important Step Forward. JAMA Cardiol. 2020, 6, 398. [Google Scholar] [CrossRef]
- Yancy, C.W.; McNally, E. Reporting Genetic Markers and the Social Determinants of Health in Clinical Cardiovascular Research—It Is Time to Recalibrate the Use of Race. JAMA Cardiol. 2020, 6, 400. [Google Scholar] [CrossRef]
Sociodemographics | Mean (SD)/Total n (%) |
---|---|
African-American | 60 (100%) |
Sex, female | 56 (93.33%) |
Age (years) | 60.83 ± 10.52 |
Household yearly income (USD/10k) ^ | 53.48 ± 34.20 |
Neighborhood deprivation index (NDI) | −1.54 ± 2.94 |
CVD Risk Factors | |
Type 2 diabetes mellitus | 13 (21.67%) |
Hyperlipidemia | 33 (55.00%) |
Hypertension | 38 (63.33%) |
Smoking history | 7 (11.67%) |
BMI (kg/m2) | 33.00 ± 7.85 |
LDL (mg/dL) a | 105.5 ± 33.02 |
HDL (mg/dL) b | 66.57 ± 20.58 |
TG (mg/dL) c | 84.97 ± 26.43 |
TC (mg/dL) d | 188.98 ± 35.20 |
TMAO (µmol/L) | 4.99 ± 9.65 |
Fasting insulin (mU/mL) e | 16.76 ± 11.98 |
Fasting glucose (mg/dL) f | 104.73 ± 16.72 |
ASCVD 10 y risk score (%) | 10.75 ± 8.51 |
HOMA-IR (%) | 4.28 ± 3.21 |
Inflammatory Markers | |
hs-CRP ^^ (mg/L) g | 5.70 ± 9.89 |
IL-1β ^^ (pg/mL) | 0.19 ± 0.24 |
IL-6 (pg/mL) | 1.28 ± 1.09 |
IL-8 (pg/mL) | 32.56 ± 72.90 |
TNF α (pg/mL) | 1.61 ± 0.99 |
NDI | TMAO | |
---|---|---|
β (p-Value) | β (p-Value) | |
Sex | 0.06 (0.62) | 0.09 (0.48) |
Age | 0.06 (0.67) | −0.14 (0.301) |
Household yearly income (USD/10k) ^ | 0.09 (0.55) | −0.173 (0.25) |
History of type 2 diabetes | −0.04 (0.73) | 0.35 (0.006) |
History of hyperlipidemia | −0.09 (0.47) | −0.00 (0.98) |
History of hypertension | 0.16 (0.21) | 0.17 (0.18) |
Smoking history | −0.07 (0.57) | 0.13 (0.340) |
BMI | 0.13 (0.33) | 0.10 (0.44) |
LDL | 0.03 (0.84) | −0.16 (0.21) |
HDL | 0.22 (0.09) | 0.03 (0.81) |
TG | −0.25 (0.06) | −0.18 (0.18) |
TC | 0.12 (0.37) | −0.16 (0.22) |
TMAO | 0.33 (0.01) | - |
Fasting insulin | 0.00 (0.98) | −0.19 (0.147) |
Fasting glucose | −0.02 (0.91) | −0.01 (0.948) |
ASCVD 10 y risk score | 0.07 (0.60) | 0.13 (0.33) |
HOMA-IR | 0.01 (0.94) | −0.19 (0.159) |
hsCRP ^^ | 0.04 (0.77) | 0.03 (0.812) |
IL-1β ^^ | 0.49 (<0.001) | 0.35 (0.006) |
IL-6 | 0.17 (0.19) | −0.02 (0.87) |
IL-8 | 0.05 (0.72) | 0.43 (0.001) |
TNF-α | 0.49 (<0.001) | 0.44 (<0.001) |
NDI | TMAO | |
---|---|---|
β (p-Value) | β (p-Value) | |
TMAO | 0.31 (0.02) | - |
hsCRP ^^ | 0.03 (0.79) | 0.03 (0.80) |
IL-1β | 0.49 (<0.001) | 0.35 (0.007) |
IL-6 | 0.18 (0.17) | −0.02 (0.89) |
IL-8 | 0.07 (0.60) | 0.46 (<0.001) |
TNF-α | 0.50 (<0.001) | 0.43 (0.001) |
Food, Food Group | Mean ± SD | Range (Min, Max) | TMAO | NDI | IL-1β | IL-6 | IL-8 | TNF-α |
---|---|---|---|---|---|---|---|---|
β (p-Value) | β (p-Value) | β (p-Value) | β (p-Value) | β (p-Value) | β (p-Value) | |||
Whole grains (n = 52) | 1.00 ± 0.78 | (0.03–4.00) | −0.08 (0.56) | −0.03 (0.81) | −0.05 (0.72) | 0.01 (0.95) | 0.23 (0.12) | −0.07 (0.63) |
Red meat (n = 50) a | 0.32 ± 0.43 | (0.00–2.00) | −0.09 (0.52) | 0.09 (0.55) | 0.13 (0.37) | −0.07 (0.62) | 0.14 (0.33) | −0.61 (0.67) |
Processed meat (n = 51) | 0.25 ± 0.27 | (0.00–1.00) | 0.09 (0.51) | 0.08 (0.60) | 0.13 (0.36) | −0.16 (0.25) | 0.34 (0.02) | 0.26 (0.07) |
Fried foods (n = 52) b | 0.28 ± 0.28 | (0.03–1.00) | −0.15 (0.32) | 0.21 (0.15) | 0.14 (0.35) | −0.15 (0.29) | 0.05 (0.75) | −0.13 (0.39) |
Fast foods (n = 51) c | 0.13 ± 0.23 | (0.00–1.00) | −0.09 (0.51) | 0.18 (0.18) | 0.001 (0.99) | −0.07 (0.60) | 0.06 (0.67) | 0.01 (0.97) |
Regular soda (n = 49) | 0.18 ± 0.36 | (0.00–2.00) | −0.10 (0.47) | 0.14 (0.32) | 0.18 (0.19) | −0.20 (0.88) | 0.13 (0.33) | −0.17 (0.22) |
Sweetened fruit drinks (n = 52) d | 0.46 ± 1.06 | (0.00–7.00) | 0.13 (0.37) | 0.05 (0.71) | 0.06 (0.66) | −0.06 (0.67) | −0.01 (0.94) | −0.04 (0.78) |
Fruit (n = 54) e | 0.80 ± 0.80 | (0.00–3.00) | −0.11 (0.44) | 0.09 (0.54) | 0.02 (0.89) | 0.34 (0.01) | 0.12 (0.36) | 0.34 (0.02) |
Green, leafy salads (n = 49) | 1.00 ± 1.47 | (0.00–7.00) | −0.14 (0.35) | −0.05 (0.76) | 0.13 (0.36) | 0.18 (0.21) | 0.01 (0.96) | 0.08 (0.59) |
Vegetables (n = 52) f | 0.57 ± 0.72 | (0.00–4.00) | −0.04 (0.77) | 0.15 (0.30) | 0.10 (0.48) | 0.03 (0.83) | 0.09 (0.57) | 0.08 (0.59) |
Other vegetables (n = 52) g | 0.62 ± 0.62 | (0.00–3.00) | −0.13 (0.38) | −0.05 (0.75) | 0.33 (0.03) | 0.30 (0.04) | −0.14 (0.37) | 0.07 (0.66) |
Beans (n = 52) | 0.21 ± 0.26 | (0.00–1.00) | −0.07 (0.63) | 0.09 (0.55) | 0.01 (0.96) | 0.08 (0.59) | 0.06 (0.70) | 0.08 (0.60) |
Coffee (n = 48) | 0.60 ± 0.64 | (0.00–2.00) | −0.07 (0.66) | 0.06 (0.71) | 0.14 (0.35) | 0.01 (0.95) | −0.02 (0.91) | 0.15 (0.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farmer, N.; Gutierrez-Huerta, C.A.; Turner, B.S.; Mitchell, V.M.; Collins, B.S.; Baumer, Y.; Wallen, G.R.; Powell-Wiley, T.M. Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker. Int. J. Environ. Res. Public Health 2021, 18, 4296. https://doi.org/10.3390/ijerph18084296
Farmer N, Gutierrez-Huerta CA, Turner BS, Mitchell VM, Collins BS, Baumer Y, Wallen GR, Powell-Wiley TM. Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker. International Journal of Environmental Research and Public Health. 2021; 18(8):4296. https://doi.org/10.3390/ijerph18084296
Chicago/Turabian StyleFarmer, Nicole, Cristhian A. Gutierrez-Huerta, Briana S. Turner, Valerie M. Mitchell, Billy S. Collins, Yvonne Baumer, Gwenyth R. Wallen, and Tiffany M. Powell-Wiley. 2021. "Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker" International Journal of Environmental Research and Public Health 18, no. 8: 4296. https://doi.org/10.3390/ijerph18084296
APA StyleFarmer, N., Gutierrez-Huerta, C. A., Turner, B. S., Mitchell, V. M., Collins, B. S., Baumer, Y., Wallen, G. R., & Powell-Wiley, T. M. (2021). Neighborhood Environment Associates with Trimethylamine-N-Oxide (TMAO) as a Cardiovascular Risk Marker. International Journal of Environmental Research and Public Health, 18(8), 4296. https://doi.org/10.3390/ijerph18084296