The Association between Preterm Birth and Ambient Air Pollution Exposure in Shiyan, China, 2015–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Population
2.3. Exposure Assessment
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Statistical Model Analysis
3.3. Stratified Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Air Pollutants | Total | Reference * | ETB | PTB | VPTB |
---|---|---|---|---|---|
n = 13,111 | n = 11,251 | n = 1246 | n = 614 | n = 64 | |
Entire pregnancy | |||||
PM10 | 80.62 ± 12.49 | 80.49 ± 12.36 | 82.1 ± 12.57 | 80.15 ± 14.42 | 85.43 ± 16.31 |
PM2.5 | 51.57 ± 6.56 | 51.51 ± 6.45 | 52.34 ± 6.78 | 51.12 ± 7.94 | 53.73 ± 8.87 |
SO2 | 21.93 ± 5.36 | 21.87 ± 5.32 | 22.66 ± 5.54 | 21.54 ± 5.53 | 23.84 ± 6.66 |
NO2 | 28.72 ± 3.90 | 28.66 ± 3.83 | 29.21 ± 4.18 | 28.78 ± 4.50 | 31.24 ± 5.90 |
First trimester | |||||
PM10 | 84.87 ± 19.70 | 84.85 ± 19.60 | 85.00 ± 20.31 | 85.04 ± 20.31 | 89.58 ± 21.18 |
PM2.5 | 53.90 ± 13.61 | 53.88 ± 13.57 | 53.93 ± 13.75 | 54.11 ± 13.88 | 57.35 ± 14.41 |
SO2 | 23.32 ± 7.17 | 23.27 ± 7.14 | 23.97 ± 7.51 | 22.91 ± 7.04 | 25.19 ± 8.12 |
NO2 | 29.42 ± 7.77 | 29.39 ± 7.75 | 29.68 ± 7.97 | 29.48 ± 7.91 | 32.23 ± 8.93 |
Second trimester | |||||
PM10 | 79.79 ± 21.30 | 79.64 ± 21.30 | 81.25 ± 20.45 | 79.58 ± 23.00 | 84.4 ± 21.15 |
PM2.5 | 50.99 ± 14.31 | 50.91 ± 14.29 | 51.86 ± 14.00 | 50.81 ± 15.21 | 52.57 ± 12.59 |
SO2 | 21.59 ± 6.57 | 21.57 ± 6.55 | 21.98 ± 6.76 | 21.23 ± 6.56 | 22.90 ± 6.83 |
NO2 | 28.13 ± 7.74 | 28.05 ± 7.72 | 28.74 ± 7.77 | 28.29 ± 8.08 | 31.46 ± 8.34 |
Third trimester | |||||
PM10 | 77.16 ± 22.46 | 77.01 ± 22.35 | 79.88 ± 23.19 | 74.32 ± 22.37 | 77.52 ± 21.90 |
PM2.5 | 49.74 ± 14.90 | 49.71 ± 14.82 | 51.18 ± 15.41 | 47.51 ± 14.87 | 47.39 ± 15.75 |
SO2 | 20.99 ± 7.05 | 20.92 ± 6.94 | 22.08 ± 7.79 | 20.03 ± 7.18 | 22.35 ± 8.71 |
NO2 | 28.59 ± 7.99 | 28.54 ± 7.90 | 29.23 ± 8.68 | 28.23 ± 8.05 | 27.76 ± 9.00 |
References
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Shapiro-Mendoza, C.K.; Barfield, W.D.; Henderson, Z.; James, A.; Howse, J.L.; Iskander, J.; Thorpe, P.G. CDC Grand Rounds: Public Health Strategies to Prevent Preterm Birth. MMWR. Morb. Mortal. Wkly. Rep. 2016, 65, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J.E.; Gravett, M.G.; Nunes, T.M.; Rubens, C.E.; Stanton, C.; GAPPS Review Group. Global report on preterm birth and stillbirth (1 of 7): Definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth 2010, 10, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, O.; Hu, J.; Li, L.; Kleeman, M.J.; Bartell, S.M.; Cockburn, M.; Escobedo, L.; Wu, J. A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008. Environ. Health Perspect. 2016, 124, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannes, T.; Jalaludin, B.; Morgan, G.; Lincoln, D.; Sheppeard, V.; Corbett, S. Impact of ambient air pollution on birth weight in Sydney, Australia. Occup. Environ. Med. 2005, 62, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.G.; Munters, E.; Pieters, N.; Smeets, K.; Cox, B.; Cuypers, A.; Fierens, F.; Penders, J.; Vangronsveld, J.; Gyselaers, W.; et al. Placental Mitochondrial DNA Content and Particulate Air Pollution during in Utero Life. Environ. Health Perspect. 2012, 120, 1346–1352. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, J.; Liu, Y.; Liang, H.; Wang, M.; Wang, C.; Shi, T. Different exposure levels of fine particulate matter and preterm birth: A meta-analysis based on cohort studies. Environ. Sci. Pollut. Res. 2017, 24, 17976–17984. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, M.; Lü, C.; Feng, L.; Ma, H.; Meng, H.; Qi, M.; Fan, Q.; Wang, H.; Zhou, H.; et al. Seasonal response of the synergism of maternal comorbidities and long-term air pollution exposure on birth outcomes. Ecotoxicol. Environ. Saf. 2020, 191, 110232. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhao, J.; Wang, Q.; Shen, H.; Wang, Y.; Xie, X.; Wang, L.; et al. The association between ambient PM2.5 exposure and the risk of preterm birth in China: A retrospective cohort study. Sci. Total Environ. 2018, 633, 1453–1459. [Google Scholar] [CrossRef]
- Qian, Z.; Liang, S.; Yang, S.; Trevathan, E.; Huang, Z.; Yang, R.; Wang, J.; Hu, K.; Zhang, Y.; Vaughn, M.; et al. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China. Int. J. Hyg. Environ. Health 2016, 219, 195–203. [Google Scholar] [CrossRef]
- Ji, X.; Meng, X.; Liu, C.; Chen, R.; Ge, Y.; Kan, L.; Fu, Q.; Li, W.; Tse, L.A.; Kan, H. Nitrogen dioxide air pollution and preterm birth in Shanghai, China. Environ. Res. 2019, 169, 79–85. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, Y.; Li, J.; Zhu, X.; Ruan, Z.; Chen, S.; Huang, G.; Lin, H.; Zhou, J.-Y.; Zhao, Q. Migrant population is more vulnerable to the effect of air pollution on preterm birth: Results from a birth cohort study in seven Chinese cities. Int. J. Hyg. Environ. Health 2019, 222, 1047–1053. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Bai, X.; Du, W.; Shen, G.; Fei, J.; Wang, Y.; Chen, A.; Chen, Y.; Zhao, M. Maternal ambient air pollution exposure with spatial-temporal variations and preterm birth risk assessment during 2013–2017 in Zhejiang Province, China. Environ. Int. 2019, 133 (Pt B), 105242. [Google Scholar] [CrossRef]
- Klepac, P.; Locatelli, I.; Korošec, S.; Künzli, N.; Kukec, A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 2018, 167, 144–159. [Google Scholar] [CrossRef]
- Shah, P.S.; Balkhair, T. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef]
- Lee, S.J.; Steer, P.J.; Filippi, V. Seasonal patterns and preterm birth: A systematic review of the literature and an analysis in a London-based cohort. BJOG 2006, 113, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N. The Exposure Uncertainty Analysis: The Association between Birth Weight and Trimester Specific Exposure to Particulate Matter (PM2.5 vs. PM10). Int. J. Environ. Res. Public Health 2016, 13, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Wang, X.; Ruan, Y.; Li, G.; Chen, Y.; Zhang, W. Preterm birth and neonatal mortality in China in 2011. Int. J. Gynecol. Obstet. 2014, 127, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Committee Opinion No 579. Obstet. Gynecol. 2013, 122, 1139–1140. [CrossRef]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Benmarhnia, T.; Zhang, H.; Knibbs, L.D.; Sheridan, P.; Li, C.; Bao, J.; Ren, M.; Wang, S.; He, Y.; et al. Identifying windows of susceptibility for maternal exposure to ambient air pollution and preterm birth. Environ. Int. 2018, 121 (Pt 1), 317–324. [Google Scholar] [CrossRef]
- Xu, X.; Ding, H.; Wang, X. Acute Effects of Total Suspended Particles and Sulfur Dioxides on Preterm Delivery: A Community-Based Cohort Study. Arch. Environ. Health Int. J. 1995, 50, 407–415. [Google Scholar] [CrossRef]
- Gutvirtz, G.; Wainstock, T.; Sheiner, E.; Landau, D.; Slutzky, A.; Walfisch, A. Long-term pediatric hematological morbidity of the early-term newborn. Eur. J. Nucl. Med. Mol. Imaging 2018, 177, 1625–1631. [Google Scholar] [CrossRef]
- Howell, E.A.; Janevic, T.; Hebert, P.L.; Egorova, N.N.; Balbierz, A.; Zeitlin, J. Differences in Morbidity and Mortality Rates in Black, White, and Hispanic Very Preterm Infants Among New York City Hospitals. JAMA Pediatr. 2018, 172, 269–277. [Google Scholar] [CrossRef]
- Wu, J.; Ren, C.; Delfino, R.J.; Chung, J.; Wilhelm, M.; Ritz, B. Association between Local Traffic-Generated Air Pollution and Preeclampsia and Preterm Delivery in the South Coast Air Basin of California. Environ. Health Perspect. 2009, 117, 1773–1779. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, C.; Ren, Z.; Feng, H.; Zuo, S.; Hao, J.; Liao, J.; Zou, Y.; Ma, L. Maternal PM2.5 exposure triggers preterm birth: A cross-sectional study in Wuhan, China. Glob. Health Res. Policy 2020, 5, 1–11. [Google Scholar] [CrossRef]
- Begić, H.; Tahirović, H.F.; Dinarević, S.; Ferković, V.; Pranjić, N. Risk factors for the development of congenital heart defects in children born in the Tuzla Canton. Med. Arh. 2002, 56, 73–77. [Google Scholar] [PubMed]
- Madhavan, N.D.; Naidu, K.A. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Hum. Exp. Toxicol. 1995, 14, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yang, R.; Zhao, J.; Cao, Z.; Chen, Y.; Zhang, B. The Associations Between Air Pollution and Adverse Pregnancy Outcomes in China. Adv. Exp. Med. Biol. 2017, 1017, 181–214. [Google Scholar] [CrossRef]
- Melody, S.; Wills, K.; Knibbs, L.D.; Ford, J.; Venn, A.; Johnston, F. Adverse birth outcomes in Victoria, Australia in association with maternal exposure to low levels of ambient air pollution. Environ. Res. 2020, 188, 109784. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Y.; Yu, Z.-B.; Qiu, H.-Y.; Wang, J.-B.; Chen, X.-Y.; Chen, K. Association between ambient air pollutants and preterm birth in Ningbo, China: A time-series study. BMC Pediatr. 2018, 18, 305. [Google Scholar] [CrossRef]
- Huang, C.; Nichols, C.; Liu, Y.; Zhang, Y.; Liu, X.; Gao, S.; Li, Z.; Ren, A. Ambient air pollution and adverse birth outcomes: A natural experiment study. Popul. Health Metr. 2015, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Kumar, N. Time-space Kriging to address the spatiotemporal misalignment in the large datasets. Atmos. Environ. 2013, 72, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Q.; Liu, J.; Yang, H.; Yin, M.; Chen, S.; Guo, P.; Ren, J.; Luo, X.; Linghu, W.; et al. Vehicle emission and atmospheric pollution in China: Problems, progress, and prospects. PeerJ 2019, 7, e6932. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jiang, P.; Dong, T.; Ding, X.; Chen, T.; Villanger, G.D.; Aase, H.; Huang, L.; Xia, Y. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age. Ecotoxicol. Environ. Saf. 2018, 157, 457–462. [Google Scholar] [CrossRef]
- Onoda, A.; Takeda, K.; Umezawa, M. Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Part. Fibre Toxicol. 2017, 14, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forshaw, J.; Gerver, S.M.; Gill, M.; Cooper, E.; Manikam, L.; Ward, H. The global effect of maternal education on complete childhood vaccination: A systematic review and meta-analysis. BMC Infect. Dis. 2017, 17, 801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammack, A.L.; Hogue, C.J.; Drews-Botsch, C.D.; Kramer, M.R.; Pearce, B.D. Associations between Maternal Exposure to Child Abuse, Preterm Birth, and Very Preterm Birth in Young, Nulliparous Women. Matern. Child Health J. 2019, 23, 847–857. [Google Scholar] [CrossRef]
- Kumar, N. Uncertainty in the relationship between criteria pollutants and low birth weight in Chicago. Atmos. Environ. 2012, 49, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhong, Y.; Pang, L.; Zhao, Y.; Liang, R.; Zheng, X. The effects of indoor air pollution from solid fuel use on cognitive function among middle-aged and older population in China. Sci. Total Environ. 2021, 754, 142460. [Google Scholar] [CrossRef]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar] [PubMed]
Variables | TOTAL | ETB | PTB | VPTB |
---|---|---|---|---|
(n = 13,111) | (n = 1246) | (n = 614) | (n = 64) | |
Gestational age | 39.05 ± 1.48 | 37.47 ± 0.50 | 34.74 ± 1.99 | 30.23 ± 1.08 |
(mean ± SD, weeks) | ||||
Fetal gender | ||||
Male | 6848(52.23%) | 719(5.48%) | 329(2.51%) | 31(0.24%) |
Female | 6262(47.76%) | 527(4.02%) | 285(2.17%) | 33(0.25%) |
Maternal age | ||||
Child-bearing age a | 11,768(89.76%) | 1043(7.96%) | 527(4.02%) | 55(0.42%) |
Advanced maternal age b | 1343(10.24%) | 203(1.55%) | 87(0.66%) | 9(0.07%) |
Maternal education | ||||
Middle school or below | 2085(15.90%) | 222(1.70%) | 123(0.94%) | 8(0.06%) |
High school or above | 11,026(84.10%) | 1024(7.81%) | 491(3.74%) | 56(0.42%) |
Gravidity | ||||
1 | 4390(33.48%) | 323(2.46%) | 171(1.30%) | 18(0.14%) |
2 | 3909(29.81%) | 351(2.68%) | 181(1.38%) | 22(0.17%) |
≥3 | 4812(36.70%) | 572(4.36%) | 262(2.00%) | 24(0.18%) |
Parity | ||||
1 | 7241(55.23%) | 553(4.22%) | 292(2.23%) | 30(0.23%) |
2 | 5513(42.05%) | 639(4.87%) | 291(2.22%) | 30(0.23%) |
≥3 | 357(2.72%) | 54(0.41%) | 31(0.24%) | 4(0.03%) |
Pollution | ETB | PTB | VPTB | |||
---|---|---|---|---|---|---|
HR (95%CI) | p | HR (95%CI) | p | HR (95%CI) | p | |
PM10 | ||||||
Entire pregnancy | 1.14(1.09,1.18) | <0.001 | 0.91(0.79,1.03) | 0.123 | 1.43(1.21,1.65) | 0.007 |
First trimester | 1.01(0.98,1.04) | 0.454 | 1.02(0.96,1.08) | 0.556 | 1.14(1.02,1.26) | 0.030 |
Second trimester | 1.04(1.02,1.07) | 0.002 | 0.99(0.94,1.05) | 0.798 | 1.11(1.00,1.22) | 0.381 |
Third trimester | 1.06(1.04,1.09) | <0.001 | 0.90(0.84,0.95) | <0.001 | 1.01(0.90,1.12) | 0.192 |
PM2.5 | ||||||
Entire pregnancy | 1.26(1.17,1.35) | <0.001 | 0.98(0.92,1.04) | 0.516 | 1.78(1.36,2.20) | 0.002 |
First trimester | 1.01(0.97,1.05) | 0.770 | 1.01(0.97,1.05) | 0.616 | 1.22(1.04,1.39) | 0.037 |
Second trimester | 1.05(1.01,1.09) | 0.011 | 1.00(0.96,1.04) | 0.943 | 1.08(0.91,1.24) | 0.072 |
Third trimester | 1.07(1.04,1.11) | <0.001 | 0.94(0.91,0.98) | 0.002 | 0.89(0.72,1.07) | 0.911 |
SO2 | ||||||
Entire pregnancy | 1.39(1.29,1.50) | <0.001 | 0.89(0.74,1.04) | 0.134 | 2.07(1.59,2.55) | 0.003 |
First trimester | 1.18(1.11,1.26) | <0.001 | 0.94(0.83,1.05) | 0.291 | 1.47(1.15,1.80) | 0.020 |
Second trimester | 1.13(1.05,1.21) | 0.004 | 0.93(0.80,1.05) | 0.233 | 1.32(0.98,1.66) | 0.114 |
Third trimester | 1.28(1.20,1.35) | <0.001 | 0.82(0.69,0.94) | 0.001 | 1.30(0.98,1.63) | 0.107 |
NO2 | ||||||
Entire pregnancy | 1.37(1.23,1.51) | <0.001 | 1.03(0.82,1.23) | 0.812 | 5.44(4.75,6.12) | <0.001 |
First trimester | 1.04(0.97,1.12) | 0.250 | 1.02(0.91,1.12) | 0.762 | 1.61(1.29,1.93) | 0.003 |
Second trimester | 1.10(1.03,1.17) | 0.009 | 1.02(0.92,1.12) | 0.685 | 1.68(1.38,1.99) | 0.001 |
Third trimester | 1.09(1.03,1.15) | 0.009 | 0.93(0.83,1.03) | 0.172 | 0.86(0.54,1.17) | 0.337 |
Subgroup | PM10 | PM2.5 | SO2 | NO2 | ||||
---|---|---|---|---|---|---|---|---|
HR (95%CI) a | p | HR (95%CI) | p | HR (95%CI) | p | HR (95%CI) | p | |
ETB | ||||||||
Maternal age | ||||||||
Child-bearing ageb | 1.12(1.06,1.18) | <0.001 | 1.43(1.27,1.59) | <0.001 | 1.33(1.20,1.45) | <0.001 | 1.44(1.18,1.71) | <0.001 |
Advanced maternal agec | 1.23(1.07,1.39) | 0.001 | 1.53(1.14,1.93) | 0.003 | 1.39(1.10,1.70) | 0.001 | 1.70(1.01,2.44) | 0.014 |
Fetal gender | ||||||||
Male | 1.13(1.06,1.20) | <0.001 | 1.25(1.11,1.40) | <0.001 | 1.36(1.18,1.56) | <0.001 | 1.31(1.09,1.58) | 0.005 |
Female | 1.14(1.06,1.22) | <0.001 | 1.26(1.10,1.45) | 0.001 | 1.41(1.20,1.66) | <0.001 | 1.43(1.14,1.78) | 0.002 |
Maternal education | ||||||||
Middle school or below | 1.23(1.09,1.38) | 0.001 | 1.51(1.21,1.88) | 0.001 | 1.63(1.26,2.10) | <0.001 | 1.82(1.29.2.55) | 0.001 |
High school or above | 1.11(1.06,1.17) | <0.001 | 1.21(1.09,1.33) | <0.001 | 1.33(1.18,1.49) | <0.001 | 1.27(1.08,1.49) | 0.003 |
VPTB | ||||||||
Maternal age | ||||||||
Child-bearing age | 1.39(1.11,1.68) | <0.001 | 1.69(1.02,2.40) | <0.001 | 2.08(1.45,2.75) | <0.001 | 3.10(2.13,4.16) | <0.001 |
Advanced maternal age | 0.96(0.89,1.47) | 0.039 | 0.91(0.76,2.00) | 0.04 | 0.87(0.71,1.94) | 0.088 | 0.91(0.71,2.71) | 0.522 |
Fetal gender | ||||||||
Male | 1.18(0.88,1.59) | 0.262 | 1.15(0.67,2.00) | 0.612 | 1.69(0.86,3.31) | 0.131 | 3.14(1.25,7.88) | 0.015 |
Female | 1.79(1.26,2.53) | 0.001 | 3.03(1.54,5.94) | 0.001 | 2.58(1.28,5.19) | 0.008 | 4.33(1.62,7.04) | <0.001 |
Maternal education | ||||||||
Middle school or below | 0.70(0.40,1.22) | 0.203 | 0.38(0.14,1.05) | 0.062 | 0.39(0.09,1.75) | 0.219 | 0.41(0.06,2.81) | 0.363 |
High school or above | 1.66(1.29,2.14) | <0.001 | 2.51(1.54,4.10) | <0.001 | 2.79(1.63,4.79) | <0.001 | 3.73(1.01,6.45) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Ren, Z.; Liu, Y.; Qiu, Y.; Yang, H.; Zhou, Y.; Wang, X.; Jiao, K.; Liao, J.; Ma, L. The Association between Preterm Birth and Ambient Air Pollution Exposure in Shiyan, China, 2015–2017. Int. J. Environ. Res. Public Health 2021, 18, 4326. https://doi.org/10.3390/ijerph18084326
Chen Q, Ren Z, Liu Y, Qiu Y, Yang H, Zhou Y, Wang X, Jiao K, Liao J, Ma L. The Association between Preterm Birth and Ambient Air Pollution Exposure in Shiyan, China, 2015–2017. International Journal of Environmental Research and Public Health. 2021; 18(8):4326. https://doi.org/10.3390/ijerph18084326
Chicago/Turabian StyleChen, Qihao, Zhan Ren, Yujie Liu, Yunfei Qiu, Haomin Yang, Yuren Zhou, Xiaodie Wang, Kuizhuang Jiao, Jingling Liao, and Lu Ma. 2021. "The Association between Preterm Birth and Ambient Air Pollution Exposure in Shiyan, China, 2015–2017" International Journal of Environmental Research and Public Health 18, no. 8: 4326. https://doi.org/10.3390/ijerph18084326
APA StyleChen, Q., Ren, Z., Liu, Y., Qiu, Y., Yang, H., Zhou, Y., Wang, X., Jiao, K., Liao, J., & Ma, L. (2021). The Association between Preterm Birth and Ambient Air Pollution Exposure in Shiyan, China, 2015–2017. International Journal of Environmental Research and Public Health, 18(8), 4326. https://doi.org/10.3390/ijerph18084326