Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation
Abstract
:1. Introduction
2. Toxicological Effects of Acrylamide on the Human Body and Its Risks Represented by It Consumption
3. Legislative Rules on the Maximum Benchmark Levels of Acrylamide in Bakery Products
4. Methods to Reduce the Acrylamide Content in Bakery Products
4.1. Strategies to Reduce Acrylamide Formation in Bakery Products
4.2. Use of Asparaginase in Bakery Products
4.3. Use of Polyvalent Cations in Bakery Products
4.4. Use of Acids and Lacto-Fermentation
4.5. Use of Antioxidants in Bakery Products
4.6. Total or Partial Replacement of Ammonium Bicarbonate in Bakery Products
4.7. Processing Methods
5. Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nachi, I.; Fhoula, I.; Smida, I.; Taher, I.B.; Chouaibi, M.; Jaunbergs, J.; Hassouna, M. Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 2018, 92, 435–441. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Nebesny, E.; Rosicka-Kaczmarek, J.; Żyżelewicz, D.; Budryn, G. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. J. Food Sci. Technol. 2018, 55, 4184–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of chickpea protein on carbohydrate reactivity in acrylamide formation in low humidity model systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogol, B.A.; Gökmen, V. Mitigation of acrylamide and hydroxymethylfurfural in biscuits using a combined partial conventional baking and vacuum post-baking process: Preliminary study at the lab scale. Innov. Food Sci. Emerg. Technol. 2014, 26, 265–270. [Google Scholar] [CrossRef]
- Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in baking products: A review article. Food Bioprocess Technol. 2011, 4, 530–543. [Google Scholar] [CrossRef]
- Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Ghasemi, J.; Hosseini-Esfahani, F.; Mohammadi, A.; Mousavi Khaneghah, A. Acrylamide content of collected food products from Tehran’s market: A risk assessment study. Environ. Sci. Pollut. Res. 2020, 27, 30558–30570. [Google Scholar] [CrossRef]
- Abt, E.; Robin, L.P.; McGrath, S.; Srinivasan, J.; DiNovi, M.; Adachi, Y.; Chirtel, S. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011–2015 data. Food Addit. Contam. Part A 2019, 36, 1475–1490. [Google Scholar] [CrossRef]
- Mesías, M.; Morales, F.J.; Delgado-Andrade, C. Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food Funct. 2019, 10, 6624–6632. [Google Scholar] [CrossRef] [Green Version]
- Andačić, I.M.; Tot, A.; Ivešić, M.; Krivohlavek, A.; Thirumdas, R.; Barba, F.J.; Brnčić, S.R. Exposure of the Croatian adult population to acrylamide through bread and bakery products. Food Chem. 2020, 322, 126771. [Google Scholar] [CrossRef]
- Mousavi Khaneghah, A.; Fakhri, Y.; Nematollahi, A.; Seilani, F.; Vasseghian, Y. The concentration of acrylamide in different food products: A global systematic review, meta-analysis, and meta-regression. Food Rev. Int. 2020, 2–19. [Google Scholar] [CrossRef]
- Crawford, L.M.; Kahlon, T.S.; Chiu, M.C.M.; Wang, S.C.; Friedman, M. Acrylamide content of experimental and commercial flatbreads. J. Food Sci. 2019, 84, 659–666. [Google Scholar] [CrossRef]
- Salimi, A.; Pashaei, R.; Bohlooli, S.; Vaghar-Moussavi, M.; Pourahmad, J. Analysis of the acrylamide in breads and evaluation of mitochondrial/lysosomal protective agents to reduce its toxicity in vitro model. Toxin Rev. 2020, 1–10. [Google Scholar] [CrossRef]
- Schouten, M.A.; Tappi, S.; Romani, S. Acrylamide in coffee: Formation and possible mitigation strategies—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3807–3821. [Google Scholar] [CrossRef]
- Schouten, M.A.; Genovese, J.; Tappi, S.; Di Francesco, A.; Baraldi, E.; Cortese, M.; Romani, S. Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innov. Food Sci. Emerg. Technol. 2020, 64, 102397. [Google Scholar] [CrossRef]
- Žilić, S. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Res. Int. 2020, 132, 109109. [Google Scholar] [CrossRef]
- Cantrell, M.S.; McDougal, O.M. Biomedical rationale for acrylamide regulation and methods of detection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2176–2205. [Google Scholar] [CrossRef]
- Jeong, H.; Hwang, S.; Kwon, H. Survey for acrylamide in processed foods from Korean market and individual exposure estimation using a non-parametric probabilistic model. Food Addit. Contam. Part A 2020, 37, 916–930. [Google Scholar] [CrossRef]
- Koszucka, A.; Nowak, A.; Nowak, I.; Motyl, I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 1677–1692. [Google Scholar] [CrossRef]
- Rifai, L.; Saleh, F.A. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. Int. J. Toxicol. 2020, 39, 93–102. [Google Scholar] [CrossRef]
- Mustafa, A.; Kamal-Eldin, A.; Petersson, E.; Andersson, R.; Åman, P. Effect of extraction pH on acrylamide content in fresh and stored rye crisp bread. J. Food Compos. Anal. 2008, 21, 351–355. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Xin, Q.; Wang, S.; Copeland, L. Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control 2017, 73, 230–236. [Google Scholar] [CrossRef]
- Gerssena, A.; Boveea, T.; van Ginkela, L.; van Ierselb, M.; Hoogenbooma, R. Food and feed safety: Cases and approaches to identify the responsible toxins and toxicants. Food Control 2019, 98, 9–18. [Google Scholar] [CrossRef]
- Vingborg Hedegaard, R.; Granby, K.; Frandsen, H.; Thygesen, J.; Skibsted, L. Acrylamide in bread. Effect of prooxidants and antioxidants. Eur. Food Res. Technol. 2008, 227, 519–525. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, T.; Liu, J.; Yuan, Y. Detection of acrylamide content in traditional Chinese food by high-performance liquid chromatography tandem mass spectrometry method. CyTA J. Food 2012, 10, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Curtis, T.; Halford, N. Reducing the acrylamide-forming potential of wheat. Food Energy Secur. 2016, 5, 153–164. [Google Scholar] [CrossRef]
- Gökmen, V.; Açar, Ö.C.; Köksel, H.; Acar, J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 2007, 104, 1136–1142. [Google Scholar] [CrossRef]
- Ohm, J.B.; Simsek, S.; Mergoum, M. Variation of protein MWD parameters and their associations with free asparagine concentration and quality characteristics in hard red spring wheat. J. Cereal Sci. 2018, 79, 154–159. [Google Scholar] [CrossRef]
- Huang, W.; Yu, S.; Zou, Q.; Tilley, M. Effects of frying conditions and yeast fermentation on the acrylamide content in you-tiao, a traditional Chinese, fried, twisted dough-roll. Food Res. Int. 2008, 41, 918–923. [Google Scholar] [CrossRef]
- Bartkiene, E.; Jakobsone, I.; Juodeikiene, G.; Vidmantiene, D.; Pugajeva, I.; Bartkevics, V. Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control 2013, 30, 35–40. [Google Scholar] [CrossRef]
- Anese, M.; Quarta, B.; Peloux, L.; Calligaris, S. Effect of formulation on the capacity of l-asparaginase to minimize acrylamide formation in short dough biscuits. Food Res. Int. 2011, 44, 2837–2842. [Google Scholar] [CrossRef]
- Michalak, J.; Czarnowska-Kujawska, M.; Klepacka, J.; Gujska, E. Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules 2020, 25, 4140. [Google Scholar] [CrossRef]
- Gülcan, Ü.; Uslu, C.C.; Mutlu, C.; Arslan-Tontul, S.; Erbaş, M. Impact of inert and inhibitor baking atmosphere on HMF and acrylamide formation in bread. Food Chem. 2020, 332, 127434. [Google Scholar] [CrossRef]
- Claus, A.; Weisz, G.M.; Kammerer, D.R.; Carle, R.; Schieber, A. A method for the determination of acrylamide in bakery products using ion trap LC-ESI-MS/MS. Mol. Nutr. Food Res. 2005, 49, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Fink, M.; Kamal-Eldin, A.; Rosén, J.; Andersson, R.; Åman, P. Interaction effects of fermentation time and added asparagine and glycine on acrylamide content in yeast-leavened bread. Food Chem. 2009, 112, 767–774. [Google Scholar] [CrossRef]
- Bråthen, E.; Knutsen, S.H. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem. 2005, 92, 693–700. [Google Scholar] [CrossRef]
- Matoso, V.; Bargi-Souza, P.; Ivanski, F.; Romano, M.A.; Romano, R.M. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 2019, 283, 422–430. [Google Scholar] [CrossRef]
- Mollakhalili-Meybodi, N.; Khorshidian, N.; Nematollahi, A.; Arab, M. Acrylamide in bread: A review on formation, health risk assessment, and determination by analytical techniques. Environ. Sci. Pollut. Res. 2021, 28, 15627–15645. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Yadav, N.; Chhillar, A.K. Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: A review. Trends Food Sci. Technol. 2019, 85, 211–225. [Google Scholar] [CrossRef]
- Sazesh, B. Quinoa as a wheat substitute to improve the textural properties and minimize the carcinogenic acrylamide content of the biscuit. J. Food Process. Preserv. 2020, 44, e14563. [Google Scholar] [CrossRef]
- Duke, T.J.; Ruestow, P.S.; Marsh, G.M. The influence of demographic, physical, behavioral, and dietary factors on hemoglobin adducts levels of acrylamide and glycidamide in the general US population. Crit. Rev. Food Sci. Nutr. 2018, 58, 700–710. [Google Scholar] [CrossRef]
- Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Hadian, Z.; Ghasemi, J.; Mohammadi, A. Investigation and determination of acrylamide in 24 types of roasted nuts and seeds using microextraction method coupled with gas chromatography–mass spectrometry: Central composite design. J. Food Meas. Charact. 2020, 14, 1249–1260. [Google Scholar] [CrossRef]
- Crawford, L.M.; Kahlon, T.S.; Wang, S.C.; Friedman, M. Acrylamide Content of Experimental Flatbreads Prepared from Potato, Quinoa, and Wheat Flours with Added Fruit and Vegetable Peels and Mushroom Powders. Foods 2019, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Bignardi, C.; Cavazza, A.; Grimaldi, M.; Laganà, C.; Manzi, C.; Rinaldi, M.; Corradini, C. Acrylamide determination in baked potatoes by HPLC–MS: Effect of steam and correlation with colour indices. Eur. Food Res. Technol. 2019, 245, 2393–2400. [Google Scholar] [CrossRef]
- Crawford, L.M.; Wang, S.C. Comparative study of four analytical methods for the routine determination of acrylamide in black ripe olives. J. Agric. Food Chem. 2019, 67, 12633–12641. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Kafouris, D.; Stavroulakis, G.; Christofidou, M.; Iakovou, X.; Christou, E.; Paikousis, L.; Yiannopoulos, S. Determination of acrylamide in food using a UPLC–MS/MS method: Results of the official control and dietary exposure assessment in Cyprus. Food Addit. Contam. Part A 2018, 35, 1928–1939. [Google Scholar] [CrossRef]
- Roszko, M.Ł.; Szczepańska, M.; Szymczyk, K.; Rzepkowska, M. Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Addit. Contam. Part B 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Esposito, F.; Velotto, S.; Rea, T.; Stasi, T.; Cirillo, T. Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules 2020, 25, 4156. [Google Scholar] [CrossRef]
- Khezerolou, A.; Alizadeh-Sani, M.; Zolfaghari Firouzsalari, N.; Ehsani, A. Formation, properties, and reduction methods of acrylamide in foods: A review study. J. Nutr. Fasting Health 2018, 6, 52–59. [Google Scholar]
- Kopanska, M.; Muchacka, R.; Czech, J.; Batoryna, M.; Formicki, G. Acrylamide toxicity and cholinergic nervous system. J. Physiol. Pharmacol. 2018, 69, 847–858. [Google Scholar]
- Lambert, M.; Inthavong, C.; Hommet, F.; Leblanc, J.C.; Hulin, M.; Guérin, T. Levels of acrylamide in foods included in ‘the first French total diet study on infants and toddlers’. Food Chem. 2018, 240, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, B.; Mohammed, A.; Umachandran, K. Food safety of potato processed in the aspect of acrylamide risk. MOJ Food Process Technol. 2018, 6, 96–102. [Google Scholar]
- Stockmann, F.; Weber, E.A.; Schreiter, P.; Merkt, N.; Claupein, W.; Graeff-Hönninger, S. Impact of nitrogen and sulfur supply on the potential of acrylamide formation in organically and conventionally grown winter wheat. Agron. J. 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Sarion, C.; Dabija, A.; Oroian, M.; Negoiță, M.; Codină, G.G. Evaluation of acrylamide levels in cereal products from the Romanian market during the 2017 and 2018 period. EuroBiotech J. 2020, 4, 127–133. [Google Scholar] [CrossRef]
- JECFA 2005. Joint FAO/WHO Expert Committee on Food Additives. Available online: http://www.who.int/ipcs/food/jecfa/summaries/summary_report_64_final.pdf (accessed on 18 March 2021).
- Negoiță, M.; Culețu, A. Application of an Accurate and Validated Method for Identification and Quantification of Acrylamide in Bread, Biscuits and Other Bakery Products Using GC-MS/MS System. J. Braz. Chem. Soc. 2016, 27, 1782–1791. [Google Scholar] [CrossRef]
- Manson, J.; Brabec, M.J.; Buelke-Sam, J.; Carlson, G.P.; Chapin, R.E.; Favor, J.B.; Fischer, L.J.; Hattis, D.; Lees, P.S.; Perreault-Darney, S.; et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of acrylamide. Birth Defects Res. B Dev. Reprod. Toxicol. 2005, 74, 17–113. [Google Scholar] [CrossRef]
- Claeys, W.; De Meulenaer, B.; Huyghebaert, A.; Scippo, M.-L.; Hoet, P.; Matthys, C. Reassessment of the acrylamide risk: Belgium as a case-study. Food Control 2016, 59, 628–635. [Google Scholar] [CrossRef]
- Sarion, C.; Dabija, A.; Codină, G.G. Assessment of acrylamide content in some foodstuffs on the Romania market. Sci. Bull. Ser. F Biotechnol. 2020, 24, 62–68. [Google Scholar]
- Negoiță, M.; Adascalului, A.; Iorga, E.; Catana, L.; Catana, M.; Belc, N. Internal validation of the method for determination of acrylamide in bread by gas chromatography tandem mass spectrometry. Rev. Chim. 2015, 66, 464–471. [Google Scholar]
- JECFA. Evaluation of Certain Food Additives and Contaminants. 72nd Report of the Joint FAO/Who Expert Committee on Food Additive; WHO Press: Geneva, Switzerland, 2011. [Google Scholar]
- Jouquand, C.; Niquet-Léridon, C.; Jacolot, P.; Petit, N.; Marier, D.; Gadonna-Widehem, P. Effects of Maillard Reaction products on sensory and nutritional qualities of the traditional French baguette. J. Food Sci. 2018, 83, 2424–2431. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Li, Y.; Bao, T.; Gowd, V.; Chen, W. Protective property of mulberry digest against oxidative stress–A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chem. 2017, 230, 306–315. [Google Scholar] [CrossRef]
- Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Ghasemi, J.; Hosseini-Esfahani, F.; Mohammadi, A. Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. J. Cereal Sci. 2019, 87, 157–164. [Google Scholar] [CrossRef]
- Svensson, K.; Abramsson, L.; Becker, W.; Glynn, A.; Hellenäs, K.E.; Lind, Y.; Rosen, J. Dietary intake of acrylamide in Sweden. Food Chem. Toxicol. 2003, 41, 1581–1586. [Google Scholar] [CrossRef]
- Şenyuva, H.Z.; Gökmen, V. Study of acrylamide in coffee using an improved liquid chromatography mass spectrometry method: Investigation of colour changes and acrylamide formation in coffee during roasting. Food Addit. Contam. 2005, 22, 214–220. [Google Scholar] [CrossRef]
- EU European Commission Recommendation of 3 May 2007 on the Monitoring of Acrylamide Levels in Food (2007/331/EC), L 123/33, 12.5.2007. 2007. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007H0331 (accessed on 18 March 2021).
- Arámbula-Villa, G.; Flores-Casamayor, V.; Velés-Medina, J.J.; Salazar, R. Mitigating effect of calcium and magnesium on acrylamide formation in tortilla chips. Cereal Chem. 2018, 95, 94–97. [Google Scholar] [CrossRef]
- Lindsay, R.C.; Jang, S. Model systems for evaluating factors affecting acrylamide formation in deep fried foods. In Chemistry and Safety of Acrylamide in Food; Springer: Boston, MA, USA, 2005; pp. 329–341. [Google Scholar]
- Saraji, M.; Javadian, S. Single-drop microextraction combined with gas chromatography-electron capture detection for the determination of acrylamide in food samples. Food Chem. 2019, 274, 55–60. [Google Scholar] [CrossRef]
- Norouzi, E.; Kamankesh, M.; Mohammadi, A.; Attaran, A. Acrylamide in bread samples: Determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. J. Cereal Sci. 2018, 79, 1–5. [Google Scholar] [CrossRef]
- Alyousef, H.A.; Wang, H.; Al-Hajj, N.Q.; Koko, M. Determination of acrylamide levels in selected commercial and traditional foods in Syria. Trop. J. Pharm. Res. 2016, 15, 1275–1281. [Google Scholar] [CrossRef]
- Raffan, S.; Halford, N.G. Acrylamide in food: Progress in and prospects for genetic and agronomic solutions. Ann. Appl. Biol. 2019, 175, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Giovannini, S.; Ghosh, R.K. Is there a need for greater integration and shift in policy to tackle food waste? Insights from a review of European Union legislations. SN Appl. Sci. 2020, 2, 1347. [Google Scholar] [CrossRef]
- Commission Decision (2007/333/EC) Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganic Tin, 3-MCPD and Benzo(A)-Pyrene in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:088:0029:0038:EN:PDF (accessed on 18 March 2021).
- European Food Safety Authority. Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 2012, 10, 2938. [Google Scholar] [CrossRef]
- European Food Safety Authority. Results on the monitoring of acrylamide levels in food. EFSA J. 2009, 7, RN-285. [Google Scholar]
- FoodDrinkEurope (FDE). Acrylamide Toolbox. 2013. Available online: http://fooddrinkeurope.eu/uploads/publications_documents/AcrylamideToolbox_2013.pdf (accessed on 15 March 2021).
- Wen, C.; Shi, X.; Wang, Z.; Gao, W.; Jiang, L.; Xiao, Q.; Liu, X.; Deng, F. Effects of metal ions on formation of acrylamide and 5-hydroxymethylfurfural in asparagine–glucose model system. Int. J. Food Sci. Technol. 2016, 51, 279–285. [Google Scholar] [CrossRef]
- EU European Commission Recommendation of 8 November 2013 on Investigations into the Levels of Acrylamide in Food (2013/647/EU). Available online: https://www.fsai.ie/uploadedFiles/Recomm_2013_647.pdf (accessed on 18 March 2021).
- EU European Commission Regulation of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food (2017/2158). Available online: https://eur-lex.europa.eu/eli/reg/2017/2158/oj (accessed on 12 January 2020).
- EFSA. Scientific opinion on the risks for public health related to the presence of furan and methylfurans in food. EFSA J. 2017, 15, 5005. [Google Scholar]
- EU European Commission Recommendation of 7 November 2019 on the Monitoring of the Presence of Acrylamide in Certain Foods (2019/1888/EU). Commission Recommendation. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019H1888 (accessed on 18 March 2021).
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Opinion of the Scientific Panel on Contaminants in Food Chain. EFSA J. 2005, 225, 1–27. [Google Scholar]
- FDE. Food Drink Europe Acrylamide Toolbox 2019. Available online: https://www.fooddrinkeurope.eu/uploads/publications_documents/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed on 15 March 2021).
- Nguyen, H.T.; Van Boekel, M.A.J.S. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chem. 2017, 230, 14–23. [Google Scholar] [CrossRef]
- Suman, M.; Generotti, S.; Cirlini, M.; Dall’Asta, C. Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins 2019, 11, 499. [Google Scholar] [CrossRef] [Green Version]
- Codex Alimentarius. Code of Practice for the Reduction of Acrylamide in Foods. CAC/RCP. 2009. Available online: http://www.codexalimentarius.org/input/download/standards/11258/CXP_067e.pdf (accessed on 20 December 2019).
- Mildner-Szkudlarz, S.; Różańska, M.; Piechowska, P.; Waśkiewicz, A.; Zawirska-Wojtasiak, R. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chem. 2019, 297, 125008. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Siadat, S.D.; Mohammadi, M.; Mortazavian, A.M. Using probiotics for mitigation of acrylamide in food products: A mini review. Curr. Opin. Food Sci. 2020, 32, 67–75. [Google Scholar] [CrossRef]
- Stockmann, F.; Weber, E.A.; Mast, B.; Schreiter, P.; Merkt, N.; Claupein, W.; Graeff-Hönninger, S. Evaluation of asparagine concentration as an indicator of the acrylamide formation in cereals grown under organic farming conditions. Agron. J. 2018, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Mishra, S. Asparaginase: A promising aspirant for mitigation of acrylamide in foods. Int. J. Food Sci. Nutr. 2017, 2, 208–214. [Google Scholar]
- Munir, N.; Zia, M.A.; Sharif, S.; Tahir, I.M.; Jahangeer, M.; Javed, I.; Shah, S.M.A. L-Asparaginase potential in acrylamide mitigation from foodstuff: A mini-review. Prog. Nutr. 2019, 21, 498–506. [Google Scholar]
- Nunes, J.C.; Cristóvão, R.O.; Freire, M.G.; Santos-Ebinuma, V.C.; Faria, J.L.; Silva, C.G.; Tavares, A.P. Recent Strategies and Applications for l-Asparaginase Confinement. Molecules 2020, 25, 5827. [Google Scholar] [CrossRef]
- Muneer, F.; Siddique, M.H.; Azeem, F.; Rasul, I.; Muzammil, S.; Zubair, M.; Nadeem, H. Microbial L-asparaginase: Purification, characterization and applications. Arch. Microbiol. 2020, 202, 967–981. [Google Scholar] [CrossRef]
- FAO/WHO Expert Committee on Food Additives (JECFA). Safety Evaluation of Certain Food Additives and Contaminants, Who Food Additive Series 59; Sixty-eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO: Geneva, Switzerland, 2008. [Google Scholar]
- FAO/WHO Expert Committee on Food Additives (JECFA). Safety Evaluation of Certain Food Additives and Contaminants, Who Food Additive Series 60; Sixty-ninth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Friedman, M. Acrylamide: Inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 2015, 6, 1752–1772. [Google Scholar] [CrossRef]
- Adebo, O.A.; Kayitesi, E.; Adebiyi, J.A.; Gbashi, S.; Temba, M.C.; Lasekan, A.; Njobeh, P.B. Mitigation of acrylamide in foods: An African perspective. In Acrylic Polymers in Healthcare; IntechOpen: London, UK, 2017; pp. 152–172. [Google Scholar]
- Baskar, G.; Aiswarya, R.; Renganathan, S. Applications of asparaginase in food processing. In Green Bio-processes; Springer: Singapore, 2019; pp. 83–98. [Google Scholar]
- Corrêa, C.L.O.; das Merces Penha, E.; Dos Anjos, M.R.; Pacheco, S.; Freitas-Silva, O.; Luna, A.S.; Gottschalk, L.M.F. Use of asparaginase for acrylamide mitigation in coffee and its influence on the content of caffeine, chlorogenic acid, and caffeic acid. Food Chem. 2021, 338, 128045. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Overview on mitigation of acrylamide in starchy fried and baked foods. J. Sci. Food Agric. 2018, 98, 4385–4394. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Peters, R.J.; Van Boekel, M.A. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type. Food Chem. 2016, 192, 575–585. [Google Scholar] [CrossRef]
- Fernandes, J.; Cunha, S. Potential Detrimental Effects of Acrylamide on Health. In Coffee: Consumption and Health Implications; The Royal Society of Chemistry: London, UK, 2019; pp. 509–519. [Google Scholar]
- Alam, S.; Ahmad, R.; Pranaw, K.; Mishra, P.; Khare, S.K. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. Bioresour. Technol. 2018, 269, 121–126. [Google Scholar]
- Ghorbani, N.S.; Tehrani, M.M.; Khodaparast, M.H.; Farhoosh, R. Effect of temperature, time, and asparaginase on acrylamide formation and physicochemical properties of bread. Acta Aliment. 2019, 48, 160–168. [Google Scholar] [CrossRef]
- Fernandes, C.L.; Carvalho, D.O.; Guido, L.F. Determination of acrylamide in biscuits by high-resolution orbitrap mass spectrometry: A novel application. Foods 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jozinović, A.; Šarkanj, B.; Ačkar, Đ.; Panak Balentić, J.; Šubarić, D.; Cvetković, T.; Babić, J. Simultaneous determination of acrylamide and hydroxymethylfurfural in extruded products by LC-MS/MS method. Molecules 2019, 24, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeri, F.; Shakeri, S.; Ghasemi, S.; Troise, A.D.; Fiore, A. Effects of formulation and baking process on acrylamide formation in Kolompeh, a traditional cookie in Iran. J. Chem. 2019, 2019, 1425098. [Google Scholar] [CrossRef]
- Matouri, M.; Alemzadeh, I. Suppressed acrylamide formation during baking in yeast-leavened bread based on added asparaginase, baking time and temperature using response surface methodology. Appl. Food Biotechnol. 2018, 5, 29–36. [Google Scholar]
- Hendriksen, H.V.; Kornbrust, B.A.; Østergaard, P.R.; Stringer, M.A. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus Oryzae. J. Agric. Food Chem. 2009, 57, 4168–4176. [Google Scholar] [CrossRef]
- Vass, M.; Amrein, T.M.; Schonbachler, B.; Escher, F.; Amado, R. Ways to reduce the acrylamide formation in cracker products. Czech J. Food Sci. 2004, 22, 19. [Google Scholar] [CrossRef]
- Anese, M.; Quarta, B.; Frias, J. Modelling the effect of asparaginase in reducing acrylamide formation in biscuits. Food Chem. 2011, 126, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Ciesarova, Z.; Kukurova, K.; Bednáriková, A.; Marková, L.; Baxa, S. Improvement of cereal product safety by enzymatic way of acrylamide mitigation. Czech J. Food Sci. 2009, 27, S96–S98. [Google Scholar] [CrossRef] [Green Version]
- Jagan Mohan, D. Synthesis, characterization and swelling properties of copolymers of N (-1, 1-dimethyll-3-oxobutyl) acrylamide with methyl methacrylate. Des. Monomers Polym. 2014, 17, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Bassett, M.N.; Pérez-Palacios, T.; Cipriano, I.; Cardoso, P.; Ferreira, I.M.; Samman, N.; Pinho, O. Bread NaCl reduction and Ca fortification. J. Food Qual. 2014, 37, 107–116. [Google Scholar] [CrossRef]
- Simsek, S.; Martinez, M.O. Quality of dough and bread prepared with sea salt or sodium chloride. J. Food Process Eng. 2016, 39, 44–52. [Google Scholar] [CrossRef]
- Kukurová, K.; Ciesarová, Z.; Bednáriková, A.; Marková, L. Effect of inorganic salts on acrylamide formation in cereal matrices. Czech J. Food Sci. 2009, 27, S425–S428. [Google Scholar]
- Levine, R.A.; Ryan, S.M. Determining the Effect of Calcium Cations on Acrylamide Formation in Cooked Wheat Products Using a Model System. J. Agric. Food Chem. 2009, 57, 6823–6829. [Google Scholar] [CrossRef]
- Levine, R.A.; Smith, R.E. Sources of Variability of Acrylamide Levels in a Cracker Model. J. Agric. Food Chem. 2005, 53, 4410–4416. [Google Scholar] [CrossRef]
- Claus, A.; Mongili, M.; Weisz, G.; Schieber, A.; Carle, R. Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. J. Cereal Sci. 2008, 47, 546–554. [Google Scholar] [CrossRef]
- Gökmen, V.; ¸Senyuva, H.Z. Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. Eur. Food Res. Technol. 2007, 225, 815–820. [Google Scholar] [CrossRef]
- McCann, T.H.; Day, L. Effect of sodium chloride on gluten network formation, dough microstructure and rheology in relation to breadmaking. J. Cereal Sci. 2013, 57, 444–452. [Google Scholar] [CrossRef]
- Voinea, A.; Stroe, S.G.; Codină, G.G. The Effect of Sodium Reduction by Sea Salt and Dry Sourdough Addition on the Wheat Flour Dough Rheological Properties. Foods 2020, 9, 610. [Google Scholar] [CrossRef]
- Dabija, A. Unconventional raw materials for the bakery industry. In Salt, a Benefic Ingredient in Bakery Products? Ed. Performantica Publishing House: Iași, Romania, 2020; pp. 173–200. ISBN 978-606-685-731-4. [Google Scholar]
- Voinea, A.; Stroe, S.G.; Codină, G.G. The Effect of Sea Salt, Dry Sourdough and Fermented Sugar as Sodium Chloride Replacers on Rheological Behavior of Wheat Flour Dough. Foods 2020, 9, 1465. [Google Scholar] [CrossRef]
- Lee, W.J.; Chi, M.H.; Sung, W.C. Effects of calcium citrate, chitosan and chitooligosaccharide addition on acrylamide and 5-hydroxymethylfurfural formation in dark brown sugar. J. Food Sci. Technol. 2019, 57, 1636–1646. [Google Scholar]
- Codină, G.G.; Zaharia, D.; Stroe, S.G.; Ropciuc, S. Influence of calcium ions addition from gluconate and lactate salts on refined wheat flour dough rheological properties. CyTA J. Food 2018, 16, 884–889. [Google Scholar]
- Kaur, H.; Datt, M.; Ekka, M.K.; Mittal, M.; Singh, A.K.; Kumaran, S. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition. Biochimie 2011, 93, 175–186. [Google Scholar] [CrossRef]
- Sadd, P.A.; Hamlet, C.G.; Liang, L. Effectiveness of methods for reducing acrylamide in bakery products. J. Agric. Food Chem. 2008, 56, 6154–6161. [Google Scholar] [CrossRef]
- Chang, K.L.B.; Wang, J.S.; Sung, W.C. Calcium Salts Reduce Acrylamide Formation and Improve Qualities of Cookies. J. Food Nutr. Res. 2014, 2, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Acar, O.C.; Pollio, M.; Di Monaco, R.; Fogliano, V.; Gökmen, V. Effect of Calcium on Acrylamide Level and Sensory Properties of Cookies. Food Bioprocess Technol. 2012, 5, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Graf, M.; Amrein, T.M.; Graf, S.; Szalay, R.; Escher, F.; Amado, R. Reducing the acrylamide content of a semi-finished biscuit on industrial scale. Food Sci. Technol. 2006, 39, 724–728. [Google Scholar] [CrossRef]
- Albedwawi, A.S.; Turner, M.S.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Liu, S.Q.; Ayyash, M.M. An overview of microbial mitigation strategies for acrylamide: Lactic acid bacteria, yeast, and cell-free extracts. LWT 2021, 143, 111159. [Google Scholar] [CrossRef]
- Amer, M.N.; Mansour, N.M.; El-Diwany, A.I.; Dawoud, I.E.; Rashad, F.M. Isolation of probiotic lactobacilli strains harboring lasparaginase and arginine deiminase genes from human infant feces for their potential application in cancer prevention. Ann. Microbiol. 2013, 63, 1121–1129. [Google Scholar] [CrossRef]
- Aishwarya, S.S.; Iyappan, S.; Lakshmi, K.V.; Rajnish, K.N. In silico analysis, molecular cloning, expression and characterization of L-asparaginase gene from Lactobacillus reuteri DSM 20016. 3 Biotech 2017, 7, 348. [Google Scholar] [CrossRef]
- Aishwarya, S.S.; Selvarajan, E.; Iyappan, S.; Rajnish, K. Recombinant lasparaginase II from Lactobacillus casei subsp. casei ATCC393 and its anticancer activity. Indian J. Microbiol. 2019, 59, 313–320. [Google Scholar] [CrossRef]
- Sung, W.C.; Chen, C.Y. Influence of Cookies Formulation on the Formation of Acrylamide. J. Food Nutr. Res. 2017, 5, 370–378. [Google Scholar]
- Bartkiene, E.; Jakobsone, I.; Pugajeva, I.; Bartkevics, V.; Zadeike, D.; Juodeikiene, G. Reducing of acrylamide formation in wheat biscuits supplemented with flaxseed and lupine. LWT 2016, 65, 275–282. [Google Scholar] [CrossRef]
- Nasiri Esfahani, B.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Addit. Contam. Part A 2017, 34, 1904–1914. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Krungleviciute, V.; Pugajeva, I.; Zadeike, D.; Juodeikiene, G.; Cizeikiene, D. The Influence of scalded flour, fermentation, and plants belonging to lamiaceae family on the wheat bread quality and acrylamide content. J. Food Sci. 2018, 83, 1560–1568. [Google Scholar] [CrossRef]
- Dastmalchi, F.; Razavi, S.H.; Labbafi, M.; Faraji, M. The impact of Lactobacillus plantarum, paracasei, casei–casei, and sanfranciscensis on reducing acrylamide in wheat bread. J. Agric. Sci. Tech. 2016, 18, 1793–1805. [Google Scholar]
- Zhang, D.; Liu, W.; Li, L.; Zhao, H.Y.; Sun, H.Y.; Meng, M.H.; Shao, M.L. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 271–277. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Lele, V.; Pugajeva, I.; Zavistanaviciute, P.; Mickiene, R.; Juodeikiene, G. A concept of mould spoilage prevention and acrylamide reduction in wheat bread: Application of lactobacilli in combination with a cranberry coating. Food Control 2018, 91, 284–293. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, S.; Zhao, X.; Sun, H.; Shao, M.; Xu, H. In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT 2019, 100, 119–125. [Google Scholar]
- Zhang, Y.; An, X. Inhibitory mechanism of quercetin against the formation of 5-(hydroxymethyl)-2-furaldehyde in buckwheat flour bread by ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Food Res. Int. 2017, 95, 68–81. [Google Scholar] [CrossRef]
- Nogueira, A.C.; Kussano, J.T.; Steel, C.J. Sourdough reduces sodium in wheat flour doughs. Int. J. Food Sci. Technol. 2015, 50, 2621–2629. [Google Scholar] [CrossRef]
- Popa, N.C.; Tamba-Berehoiu, R.; Popescu, S.; Varga, M.; Codină, G.G. Predective model of the alveografic parameters in flours obtained from Romanian grains. Rom. Biotechnol. Lett. 2009, 14, 4234–4242. [Google Scholar]
- Codină, G.G.; Mironeasa, S. Influence of mixing speed on dough microstructure and rheology. Food Technol. Biotechnol. 2013, 51, 509–519. [Google Scholar]
- Fu, Z.; Yoo, M.J.; Zhou, W.; Zhang, L.; Chen, Y.; Lu, J. Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chem. 2018, 242, 162–168. [Google Scholar] [CrossRef]
- Namir, M.; Rabie, M.A.; Rabie, N.A.; Ramadan, M.F. Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. J. Food Prot. 2018, 81, 1696–1706. [Google Scholar] [CrossRef]
- Tesby, M.R.L.; Neveen, F.A.; Neveen, A.; Nashwa, M.Y. Effect of Thyme, Cumin and Anise on the Formation of Acrylamide in Some Bakery Products. Alex. J. Agric. Sci. 2018, 63, 183–192. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Yin, Y.; Li, B.; Zhang, X.; Jiao, W.; Liang, Y. Effect of ground ginger on dough and biscuit characteristics and acrylamide content. Food Sci. Biotechnol. 2019, 28, 1359–1366. [Google Scholar] [CrossRef]
- Rydberg, P.; Eriksson, S.; Tareke, E.; Karlsson, P.; Ehrenberg, L.; Törnqvist, M. Factors that influence the acrylamide content of heated foods. In Chemistry and Safety of Acrylamide in Food; Springer: Boston, MA, USA, 2005; pp. 317–328. [Google Scholar]
- Pérez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in Californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, K.T.; Lin, J.A.; Chen, Y.T.; Chen, Y.A.; Wu, J.T.; Hsieh, C.W. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 2019, 93, 271–280. [Google Scholar] [CrossRef]
- Torres, J.D.; Dueik, V.; Carré, D.; Bouchon, P. Effect of the addition of soluble dietary fiber and green tea polyphenols on acrylamide formation and in vitro starch digestibility in baked starchy matrices. Molecules 2019, 24, 3674. [Google Scholar] [CrossRef] [Green Version]
- Waleed, A.A.; Mahdi, A.A.; Al-Maqtari, Q.A.; Fan, M.; Wang, L.; Li, Y.; Zhang, H. Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. J. Food Meas. Charact. 2019, 13, 2426–2437. [Google Scholar]
- Mihai, A.L.; Negoiţă, M.; Horneţ, G.A. Assessment of the acrylamide level of cereal-based products from Romania market in accordance with Commission Regulation (EU) 2017/2158. Ann. Univ. Dunarea Jos Galati Fascicle VI-Food Technol. 2020, 44, 104–117. [Google Scholar] [CrossRef]
- Jing, Y.; Li, X.; Hu, X.; Ma, Z.; Liu, L.; Ma, X. Effect of buckwheat extracts on acrylamide formation and the quality of bread. J. Sci. Food Agric. 2019, 99, 6482–6489. [Google Scholar] [CrossRef]
- Becalski, A.; Lau, B.P.Y.; Lewis, D.; Seaman, S.W.; Hayward, S.; Sahagian, M.; Leclerc, Y. Acrylamide in French fries: Influence of free amino acids and sugars. J. Agric. Food Chem. 2004, 52, 3801–3806. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Acrylamide in food: A model for mechanism of formation and its reduction. Innov. Food Sci. Emerg. Technol. 2003, 4, 331–338. [Google Scholar] [CrossRef]
- Bent, G.A.; Maragh, P.; Dasgupta, T. Acrylamide in Caribbean foods–residual levels and their relation to reducing sugar and asparagine content. Food Chem. 2012, 133, 451–457. [Google Scholar] [CrossRef]
- Amrein, T.M.; Schoenbaechler, B.; Escher, F.; Amado, R. Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 2004, 52, 4282–4288. [Google Scholar] [CrossRef]
- Taeymans, D.; Wood, J.; Ashby, P.; Blank, I.; Studer, A.; Stadler, R.H.; Gonde, P.; Van Eijck, P.; Lalljie, S.; Lingnert, H.; et al. A review of acrylamide: An industry perspective on research, analysis, formation and control. Crit. Rev. Food Sci. Nutr. 2004, 44, 323–347. [Google Scholar] [CrossRef]
- Anese, M.; Suman, M.; Nicoli, M.C. Technological Strategies to Reduce Acrylamide Levels in Heated Foods. Food Eng. Rev. 2009, 1, 169–179. [Google Scholar] [CrossRef]
- Anese, M.; Sovrano, S.; Bortolomeazzi, R. Effect of radiofrequency heating on acrylamide formation in bakery products. Eur. Food Res. Technol. 2008, 226, 1197–1203. [Google Scholar] [CrossRef]
- Kocadağlı, T.; Koray Palazoğlu, T.; Gökmen, V. Mitigation of acrylamide formation in cookies by using Maillard reaction products as recipe modifier in a combined partial conventional baking and radio frequency post-baking process. Eur. Food Res. Technol. 2012, 235, 711–717. [Google Scholar] [CrossRef]
- Chavan, R.; Chavan, S. Microwave Baking in Food Industry: A Review. Int. J. Dairy Sci. 2010, 5, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Kalla, A.M.; Devaraju, R. Microwave energy and its application in food industry: A reveiw. Asian J. Dairy Food Res. 2017, 36, 37–44. [Google Scholar] [CrossRef]
- Ahrné, L.; Andersson, C.-G.; Floberg, P.; Rosén, J.; Lingnert, H. Effect of crust temperature and water content on acrylamide formation during baking of white bread: Steam and falling temperature baking. LWT 2007, 40, 1708–1715. [Google Scholar] [CrossRef]
- Masatcioglu, M.T.; Gokmen, V.; Ng, P.K.W.; Koksel, H. Effects of formulation, extrusion cooking conditions, and CO2 injection on the formation of acrylamide in corn extrudates. J. Sci. Food Agric. 2014, 94, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Palazoğlu, T.K.; Coşkun, Y.; Tuta, S.; Mogol, B.A.; Gökmen, V. Effect of vacuum-combined baking of cookies on acrylamide content, texture and color. Eur. Food Res. Technol. 2015, 240, 243–249. [Google Scholar] [CrossRef]
Food | Benchmark Level 2013 [μg/kg] | Benchmark Level 2017 [μg/kg] |
---|---|---|
Soft bread | ||
Wheat based bread | 80 | 50 |
Soft bread other than wheat based bread | 150 | 100 |
Breakfast cereals (excl. porridge) | ||
Bran products and whole grain cereals, gun puffed grain | 400 | 300 |
Wheat and rye based products | 300 | 300 |
Maize, oat, spelt, barley and rice based products | 200 | 150 |
Biscuits and wafers | 500 | 350 |
Crackers with the exception of potato based crackers | 500 | 400 |
Crispbread | 450 | 350 |
Ginger bread | 1000 | 800 |
Baby foods, processed cereal based foods for infants and young children excluding biscuits and rusks | 50 | 40 |
Biscuits and rusks for infants and young children | 200 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarion, C.; Codină, G.G.; Dabija, A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. Int. J. Environ. Res. Public Health 2021, 18, 4332. https://doi.org/10.3390/ijerph18084332
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. International Journal of Environmental Research and Public Health. 2021; 18(8):4332. https://doi.org/10.3390/ijerph18084332
Chicago/Turabian StyleSarion, Cristina, Georgiana Gabriela Codină, and Adriana Dabija. 2021. "Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation" International Journal of Environmental Research and Public Health 18, no. 8: 4332. https://doi.org/10.3390/ijerph18084332
APA StyleSarion, C., Codină, G. G., & Dabija, A. (2021). Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. International Journal of Environmental Research and Public Health, 18(8), 4332. https://doi.org/10.3390/ijerph18084332