Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Antimicrobial Consumption and Costs
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary bacterial infections associated with influenza pandemics. Front. Microbiol. 2017, 8, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assiri, A.; Al-Tawfiq, J.A.; Al-Rabeeah, A.A.; Al-Rabiah, F.A.; Al-Hajjar, S.; Al-Barrak, A.; Flemban, H.; Al-Nassir, W.N.; Balkhy, H.H.; Al-Hakeem, R.F.; et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect. Dis. 2013, 13, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Yap, F.H.Y.; Gomersall, C.D.; Fung, K.S.C.; Ho, P.; Ho, O.; Lam, P.K.N.; Lam, D.T.C.; Lyon, D.J.; Joint, G.M. Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clin. Infect. Dis. 2004, 39, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, S.; Bischoff, W.E.; Sheretz, R.J. Outbreak of methicillin-resistant Staphylococcus aureus infection associated with an outbreak of severe acute respiratory syndrome. Clin. Infect. Dis. 2005, 40, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A singlecentered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Möhlenkamp, S.; Thiele, H. Ventilation of COVID-19 patients in intensive care units. Herz 2020, 45, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with Different Severity: A Multi-center Study of Clinical Features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Jamilloux, Y.; Henry, T.; Belot, A.; Viel, S.; Fauter, M.; El Jammal, T.; Walzer, T.; François, B.; Sève, P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun. Rev. 2020, 19, 102567. [Google Scholar] [CrossRef]
- Póvoa, H.C.C.; Chianca, G.C.; Iorio, N.L.P.P. COVID-19: An alert to ventilatorassociated bacterial pneumonia. Infect. Dis. Ther. 2020, 9, 417–420. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Q.; Xu, M.; Kong, H.; Chen, H.; Fu, Y.; Yao, Y.; Zhou, H.; Zhou, J. Secondary bacterial infections in critical ill patients of COVID-19. Open Forum Infect. Dis. 2020, 7, ofaa220. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S. Bacterial and fungal coinfection among hospitalised patients with COVID-19: A retrospectivecohort study in a UK secondary care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Du, R.H.; Liu, L.M.; Yin, W.; Wang, W.; Guan, L.L.; Yuan, M.L.; Li, Y.L.; Hu, Y.; Li, X.Y.; Sun, B.; et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann. Am. Thorac. Soc. 2020, 17, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Xiang, Y.I.; Fang, W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J. Med. Virol. 2020, 92, 797–806. [Google Scholar] [CrossRef]
- Xia, W.; Shao, J.; Guo, Y.; Peng, X.; Li, Z.; Hu, D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr. Pulmonol. 2020, 55, 1169–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzi, L.; Babouee, B.; Vögeli, N.; Laffer, R.; Dangel, M.; Frei, R.; Battegay, M.; Widmer, A.F. How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: A prospective study with 654 patients. Clin. Microbiol. Infect. 2012, 18, E355–E361. [Google Scholar] [CrossRef] [Green Version]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P.; et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.E.; Botto, H.; Cek, M.; Grabe, M.; Tenke, P.; Wagenlehner, F.M.; Naber, K.G. Critical review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification system. Int. J. Antimicrob. Agents 2011, 38, 64–70. [Google Scholar] [CrossRef]
- Stein, R.; Dogan, H.S.; Hoebeke, P.; Kočvara, R.; Nijman, R.J.; Radmayr, C.; Tekgül, S.; European Association of Urology; European Society for Pediatric Urology. Urinary tract infections in children: EAU/ESPU guidelines. Eur. Urol. 2015, 67, 546–558. [Google Scholar]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2013.
- European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units. In Annual Epidemiological Report for 2017; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Rodríguez-Baño, J.; Paño-Pardo, J.R.; Alvarez-Rocha, L.; Asensio, Á.; Calbo, E.; Cercenado, E.; Cisneros, J.M.; Cobo, J.; Delgado, O.; Garnacho-Montero, J.; et al. Programas de optimización de uso de antimicrobianos (PROA) en hospitales españoles: Documento de consenso GEIH-SEIMC, SEFH y SEMPSPH [Programs for optimizing the use of antibiotics (PROA) in Spanish hospitals: GEIH-SEIMC, SEFH and SEMPSPH consensus document]. Farm. Hosp. 2012, 36, e1–e30. [Google Scholar]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensiv. Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 2010, 51 (Suppl. 1), S81–S87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Wu, J.; Li, Y.; Zhou, X.; Li, X.; Chen, H.; Guo, M.; Chen, S.; Sun, F.; et al. Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. COVID-BioB study group. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Al-Hatmi, A.M.S.; Moshin, J.; Al-Huraizi, A.; Khamis, F. COVID-19 associated invasive candidiasis. J. Infect. 2020, 82, e45–e46. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Ahmadikia, K.; Badali, H.; Khodavaisy, S. Opportunistic fungal infections in the epidemic area of COVID-19: A clinical and diagnostic perspective from Iran. Mycopathologia 2020, 185, 607–611. [Google Scholar]
- Castaldi, S.; Luconi, E.; Marano, G.; Auxilia, F.; Maraschini, A.; Bono, P.; Ungaro, R.; Bandera, A.; Boracchi, P.; Biganzoli, E. Hospital acquired infections in COVID-19 patients in sub intensive care unit. Acta Biomed. 2020, 91, e2020017. [Google Scholar] [PubMed]
- Guisado-Gil, A.B.; Infante-Domínguez, C.; Peñalva, G.; Praena, J.; Roca, C.; Navarro-Amuedo, M.D.; Aguilar-Guisado, M.; Espinosa-Aguilera, N.; Poyato-Borrego, M.; Romero-Rodríguez, N.; et al. On behalf of the prioam team. Impact of the COVID-19 Pandemic on Antimicrobial Consumption and Hospital-Acquired Candidemia and Multidrug-Resistant Bloodstream Infections. Antibiotics 2020, 9, 816. [Google Scholar] [CrossRef]
- Kokkoris, S.; Papachatzakis, I.; Gavrielatou, E.; Ntaidou, T.; Ischaki, E.; Malachias, S.; Vrettou, C.; Nichlos, C.; Kanavou, A.; Zervakis, D. ICU-acquired bloodstream infections in critically ill patients with COVID-19. J. Hosp. Infect. 2021, 107, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Barreiros, G.; Guimarães, L.F.; Deriquehem, V.A.S.; Castiñeiras, A.C.; Nouér, S.A. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses 2021, 64, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Beović, B.; Doušak, M.; Ferreira-Coimbra, J.; Nadrah, K.; Rubulotta, F.; Belliato, M.; Berger-Estilita, J.; Ayoade, F.; Rello, J.; Erdem, H. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020, 75, 3386–3390. [Google Scholar] [CrossRef] [PubMed]
ICU-2019 | ICU-noCOVID | ICU-COVID | p | ||||
---|---|---|---|---|---|---|---|
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | |||||
TOT | POS (%) | TOT | POS (%) | TOT | POS (%) | ||
Central venous blood culture | 178 | 26 (14.6) | 119 | 18 (15.1) | 206 | 71 (34.5) | <0.05 |
Periferal venous blood culture | 160 | 21 (13.1) | 122 | 12 (9.8) | 198 | 48 (24.3) | <0.05 |
Bronchoaspirate culture | 103 | 52 (50.5) | 72 | 40 (55.6) | 134 | 82 (61.2) | N.S. |
Bronchoalveolar lavage culture | 15 | 7 (46.7) | 8 | 4 (50) | 9 | 6 (66.7) | N.S. |
Urinary catheter | 25 | 10 (40) | 7 | 4 (57.1) | 27 | 13 (48.1) | N.S. |
Tot. | 481 | 116 (24.1) | 328 | 78 (23.8) | 574 | 220 (38.3) | <0.05 |
ICU-2019 | ICU-noCOVID | ICU-COVID | |||||||
---|---|---|---|---|---|---|---|---|---|
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | |||||||
Gram+ | Gram− | Fungi | Gram+ | Gram− | Fungi | Gram+ | Gram− | Fungi | |
Central venous blood culture | 21 | 4 | 1 | 13 | 5 | 0 | 43 | 16 | 12 |
Periferal venous blood culture | 16 | 5 | 0 | 10 | 2 | 0 | 32 | 10 | 6 |
Bronchoaspirate culture | 3 | 46 | 3 | 3 | 17 | 20 | 9 | 50 | 23 |
Bronchoalveolar lavage culture | 2 | 5 | 0 | 1 | 1 | 2 | 3 | 3 | 0 |
Urinary catheter | 2 | 7 | 1 | 0 | 1 | 3 | 2 | 2 | 9 |
Tot. | 44 | 67 | 5 | 27 | 26 | 25 | 89 | 81 | 50 |
ICU-2019 | ICU-noCOVID | ICU-COVID | p | |
---|---|---|---|---|
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | ||
Microbial Isolates | n | n | n | |
Acinetobacter baumannii | 9 | - | 17 | <0.05 |
Candida albicans | - | 11 | 29 | <0.05 |
Candida glabrata | 2 | 5 | 4 | N.S. |
Candida krusei | - | 1 | - | N.S. |
Candida lusitaniae/Ciavispora I | 2 | - | 2 | N.S. |
Candida parapsilosis | - | - | 13 | N.S. |
Candida tropicalis | 1 | 8 | - | N.S. |
Enterococcus faecalis | 2 | 1 | 14 | <0.05 |
Enterococcus faecium | 1 | 1 | 10 | <0.05 |
Pseudomonas aeruginosa | 15 | 9 | 3 | N.S. |
Staphylococcus epidermidis | 21 | 10 | 42 | <0.05 |
Stenotrophomonas maltophilia | 3 | 5 | 13 | <0.05 |
Total Samples Pos. | 116 | 78 | 120 | <0.05 |
ICU-2019 | ICU-noCOVID | ICU-COVID | |||||||
---|---|---|---|---|---|---|---|---|---|
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | |||||||
MRSA | CPE/CRE | ESBL+ | MRSA | CPE/CRE | ESBL+ | MRSA | CPE/CRE | ESBL+ | |
Central venous blood culture | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1/1 | 0 |
Periferal venous blood culture | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Bronchoaspirate culture | 2 | 0 | 0 | 2 | 1/1 | 0 | 2 | 2/2 | 0 |
Bronchoalveolar lavage culture | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
Urinary catheter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1/1 | 0 |
Tot. | 4 | 0 | 2 | 2 | 1/1 | 0 | 5 | 4/4 | 0 |
ICU-2019 | ICU-noCOVID | ICU-COVID | |
---|---|---|---|
March–April 2019 | March–April 2020 | March–April 2020 | |
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | |
Amoxicillin/clavulanic acid | 84.5 | 105.8 | 6.5 |
Azithromycin | 0 | 14.8 | 10.9 |
Ceftriaxone | 9.5 | 18.1 | 2 |
Colistin | 0 | 0 | 5.9 |
Daptomycin | 3.4 | 20 | 0 |
Meropenem | 7.9 | 23 | 31.9 |
Piperacillin/tazobactam | 14.3 | 37.6 | 44.7 |
Vancomycin | 0 | 11.5 | 17.1 |
Caspofungin | 10 | 8.2 | 22.5 |
Fluconazole | 1.7 | 32.9 | 0 |
Voriconazole | - | - | - |
ICU-2019 | ICU-noCOVID | ICU-COVID | |
---|---|---|---|
Patients (n = 58) | Patients (n = 47) | Patients (n = 28) | |
Aminoglycosides | EUR 51 | EUR 45 | EUR 17 |
Amoxicillin/clavulanic acid | EUR 862 | EUR 690 | EUR 87 |
Carbapenems | EUR 259 | EUR 544 | EUR 1268 |
Ceftazidime/avibactam | EUR 3256 | EUR 0 | EUR 2442 |
Ceftolozane/tazobactam | EUR 774 | EUR 0 | EUR 0 |
Cephalosporins I-II | EUR 0 | EUR 67 | EUR 0 |
Cephalosporins III | EUR 248 | EUR 283 | EUR 616 |
Fluoroquinolones | EUR 51 | EUR 46 | EUR 0 |
Glycylcyclines | EUR 752 | EUR 280 | EUR 840 |
Glycopeptides | EUR 0 | EUR 134 | EUR 335 |
Lincosamides | EUR 64 | EUR 96 | EUR 0 |
Lipopeptides | EUR 629 | EUR 709 | EUR 0 |
Macrolides | EUR 233 | EUR 361 | EUR 276 |
Nitroimidazoles | EUR 54 | EUR 54 | EUR 0 |
Linezolid | EUR 231 | EUR 144 | EUR 867 |
Penicillin | EUR 15 | EUR 0 | EUR 0 |
Piperacillin/tazobactam | EUR 1020 | EUR 1079 | EUR 3259 |
Colistin | EUR 0 | EUR 0 | EUR 210 |
Sulfonamides | EUR 0 | EUR 4 | EUR 0 |
Liposomal amphotericin B | EUR 0 | EUR 0 | EUR 24,956 |
Triazoles | EUR 1 | EUR 47 | EUR 0 |
Echinocandins | EUR 8586 | EUR 5046 | EUR 23,091 |
Tot. | EUR 17,086 | EUR 9629 | EUR 58,264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cultrera, R.; Barozzi, A.; Libanore, M.; Marangoni, E.; Pora, R.; Quarta, B.; Spadaro, S.; Ragazzi, R.; Marra, A.; Segala, D.; et al. Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings. Int. J. Environ. Res. Public Health 2021, 18, 4358. https://doi.org/10.3390/ijerph18084358
Cultrera R, Barozzi A, Libanore M, Marangoni E, Pora R, Quarta B, Spadaro S, Ragazzi R, Marra A, Segala D, et al. Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings. International Journal of Environmental Research and Public Health. 2021; 18(8):4358. https://doi.org/10.3390/ijerph18084358
Chicago/Turabian StyleCultrera, Rosario, Agostino Barozzi, Marco Libanore, Elisabetta Marangoni, Roberto Pora, Brunella Quarta, Savino Spadaro, Riccardo Ragazzi, Anna Marra, Daniela Segala, and et al. 2021. "Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings" International Journal of Environmental Research and Public Health 18, no. 8: 4358. https://doi.org/10.3390/ijerph18084358
APA StyleCultrera, R., Barozzi, A., Libanore, M., Marangoni, E., Pora, R., Quarta, B., Spadaro, S., Ragazzi, R., Marra, A., Segala, D., & Volta, C. A. (2021). Co-Infections in Critically Ill Patients with or without COVID-19: A Comparison of Clinical Microbial Culture Findings. International Journal of Environmental Research and Public Health, 18(8), 4358. https://doi.org/10.3390/ijerph18084358