Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Analysis
2.2. Ecological Risk Assessment
2.3. Adult Lead Model (ALM)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Pollution Status of Soil Pb around Mines in China
3.2. Characteristics of Soil Pb Pollution around Metal Mines
3.3. Ecological Risk Assessment
3.4. Assessment of Adult BLLs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019, 250, 109557. [Google Scholar] [CrossRef] [PubMed]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. Effects of lead and cadmium on the immune system and cancer progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Vatanpour, N.; Feizy, J.; Hedayati Talouki, H.; Es’haghi, Z.; Scesi, L.; Malvandi, A.M. The high levels of heavy metal accu-mulation in cultivated rice from the Tajan river basin: Health and ecological risk assessment. Chemosphere 2020, 245, 125639. [Google Scholar] [CrossRef]
- MEP and MLR. 2014. Available online: http://english.mee.gov.cn/News_service/news_release/201404/t20140428_271088.shtml (accessed on 28 April 2014).
- MNR. China Mineral Resources. Available online: http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/t20191022_2473040.html (accessed on 22 October 2019).
- Zhang, X.W.; Yang, L.S.; Li, Y.H.; Li, H.R.; Wang, W.Y.; Ye, B.X. Impacts of lead/zinc mining and smelting on the environ-ment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, K.; Liu, Q.; Wang, L.; Feng, X.; Li, H. Galena weathering in simulated alkaline soil: Lead transformation and environmental implications. Sci. Total Environ. 2021, 755, 142708. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, H.; Li, X.; Lu, J.; Zhang, G. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China. Environ. Monit. Assess. 2016, 188, 413. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Fan, L.; Chen, T.; Bai, Y.; Yu, Q.; Liu, Y. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere 2017, 174, 613–627. [Google Scholar] [CrossRef]
- Du, Y.; Chen, L.; Ding, P.; Liu, L.; He, Q.; Chen, B.; Duan, Y. Different exposure profile of heavy metal and health risk be-tween residents near a Pb-Zn mine and a Mn mine in Huayuan County, South China. Chemosphere 2019, 216, 352–364. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Gong, Y.; Yang, S.; Ye, M.; Yu, X.; Ma, J. Status of mercury accumulation in agricultural soils across China (1976–2016). Ecotoxicol. Environ. Saf. 2020, 197, 110564. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Gong, Y.; Liu, Q.; Yang, S.; Ma, J.; Zhao, L.; Hou, H. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 2020, 244, 125516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identifica-tion for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA 2015, 125, 200–205. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil; USEPA: Washington, DC, USA. Available online: https://semspub.epa.gov/work/HQ/174559.pdf (accessed on 1 January 2003).
- Maddaloni, M.; Ballew, M.; Diamond, G.; Follansbee, M.; Gefell, D.; Goodrum, P.; Johnson, M.; Koporec, K.; Khoury, G.; Luey, J.; et al. Assessing Lead Risks at Non-Residential Hazardous Waste Sites. Hum. Ecol. Risk Assess. Int. J. 2005, 11, 967–1003. [Google Scholar] [CrossRef]
- Zajac, L.; Kobrosly, R.W.; Ericson, B.; Caravanos, J.; Landrigan, P.J.; Riederer, A.M. Probabilistic estimates of prenatal lead exposure at 195 toxic hotspots in low- and middle-income countries. Environ. Res. 2020, 183, 109251. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, Y.; Li, Q.; Zhao, D.; Wan, W. Spatial distribution and ecological risk assessment of heavy metals in soil around lead-zinc mining area. Environ. Sci. Technol. 2016, 39, 186–192. [Google Scholar]
- Li, X.; Zhao, Z.; Yuan, Y.; Wang, X.; Li, X. Heavy metal accumulation and its spatial distribution in agricultural soils: Evi-dence from Hunan province, China. RSC Adv. 2018, 8, 10665–10672. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Chang, S.X.; Collins, C.; Xu, J.; Liu, X. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environ. Int. 2019, 128, 165–174. [Google Scholar] [CrossRef]
- Salomons, W. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J. Geochem. Explor. 1995, 52, 5–23. [Google Scholar] [CrossRef]
- Schröder, W.; Holy, M.; Pesch, R.; Harmens, H.; Ilyin, I.; Steinnes, E.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; et al. Are cadmium, lead and mercury con-centrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J. Soils Sediments 2010, 10, 1572–1584. [Google Scholar] [CrossRef]
- Yi, K.; Fan, W.; Chen, J.; Jiang, S.; Huang, S.; Peng, L.; Zeng, Q.; Luo, S. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province, China. Sci. Total Environ. 2018, 634, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Khademi, H.; Abbaspour, A.; Martinez-Martinez, S.; Gabarron, M.; Shahrokh, V.; Faz, A.; Acosta, J.A. Provenance and en-vironmental risk of windblown materials from mine tailing ponds, Murcia, Spain. Environ. Pollut. 2018, 241, 432–440. [Google Scholar] [CrossRef]
- Yun, S.-W.; Baveye, P.C.; Kim, D.-H.; Kang, D.-H.; Lee, S.-Y.; Kong, M.-J.; Park, C.-G.; Kim, H.-D.; Son, J.; Yu, C. Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea. Environ. Pollut. 2018, 238, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, H.; Zhou, T.; Lin, C.; Guo, S. The estimated atmospheric lead emissions in China, 1990. Atmos. Environ. 2012, 60, 1–8. [Google Scholar] [CrossRef]
- Han, L.; Gao, B.; Hao, H.; Zhou, H.; Lu, J.; Sun, K. Lead contamination in sediments in the past 20 years: A challenge for China. Sci. Total Environ. 2018, 640–641, 746–756. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Zhang, Y.; Liu, C.; Hu, Y.; Gong, Y.; Wu, X.; Ju, T.; Hou, H.; Zhao, L. Status of lead accumulation in agricul-tural soils across China (1979–2016). Environ. Int. 2019, 129, 35–41. [Google Scholar] [CrossRef]
- Laidlaw, M.A.; Mohmmad, S.M.; Gulson, B.L.; Taylor, M.P.; Kristensen, L.J.; Birch, G. Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia. Environ. Res. 2017, 156, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Giubilato, E.; Critto, A.; Wang, L.; Marcomini, A.; Zhang, J. Probabilistic modeling of aggregate lead exposure in children of urban China using an adapted IEUBK model. Sci. Total Environ. 2017, 584–585, 259–267. [Google Scholar] [CrossRef]
- Gilbert, S.G.; Weiss, B. A rationale for lowering the blood lead action level from 10 to 2 microg/dl. Neurotoxicology 2006, 27, 693–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, M.; Heinzow, B.; Angerer, J.; Schulz, C. Reassessment of critical lead effects by the German Human Biomonitoring Commission results in suspension of the human biomonitoring values (HBM I and HBM II) for lead in blood of children and adults. Int. J. Hyg. Environ. Health 2010, 213, 265–269. [Google Scholar] [CrossRef]
- CDC. Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in “Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention; CDC: Atlanta, GA, USA, 2012.
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environ-mental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed]
Potential Ecological Hazard Degree | |
---|---|
< 40 | Low risk |
40 ≤ < 80 | Moderate risk |
80 ≤ < 160 | Considerable risk |
160 ≤ < 320 | High risk |
≥ 320 | Extreme high risk |
Type of Mine | Major Associated Metals |
---|---|
Tungsten (W) | W, Sn, Mo, Bi |
Lead-Zinc (Pb-Zn) | Pb, Zn, Cd, Au, Ag, Cu, Sn |
Antimony (Sb) | Sb, Au, W |
Manganese (Mn) | Mn, Co, Ni, Cu, Pb, Zn |
Copper (Cu) | Cu, Mo, Au, Ag |
Gold (Au) | Au, Ag, Cu, Zn, Pb, Pt |
Iron (Fe) | Fe, Cu, Ni |
Tin (Sn) | Sn, Pb, W, Bi, Cd, Ag, Cu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Du, P.; Luo, H.; Chen, J.; Zhang, Y.; Wu, M.; Xu, G. Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China. Int. J. Environ. Res. Public Health 2021, 18, 4598. https://doi.org/10.3390/ijerph18094598
Shi J, Du P, Luo H, Chen J, Zhang Y, Wu M, Xu G. Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China. International Journal of Environmental Research and Public Health. 2021; 18(9):4598. https://doi.org/10.3390/ijerph18094598
Chicago/Turabian StyleShi, Jing, Ping Du, Huilong Luo, Juan Chen, Yunhui Zhang, Minghong Wu, and Gang Xu. 2021. "Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China" International Journal of Environmental Research and Public Health 18, no. 9: 4598. https://doi.org/10.3390/ijerph18094598
APA StyleShi, J., Du, P., Luo, H., Chen, J., Zhang, Y., Wu, M., & Xu, G. (2021). Characteristics and Risk Assessment of Soil Polluted by Lead around Various Metal Mines in China. International Journal of Environmental Research and Public Health, 18(9), 4598. https://doi.org/10.3390/ijerph18094598