Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas—A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Audio Recordings and Land Use Types
2.3. Statistical Analyses
3. Results
3.1. Development of Noise Levels (LAeq,24h)
3.2. Differences of Noise Levels Pre- and during Lockdown
3.3. Development of Weekly Noise Levels
3.4. Development of Noise Levels by Time of Day
4. Discussion
4.1. Strengths and Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Health Organization (WHO). WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 19 November 2020).
- World Health Organization (WHO). 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 24 April 2021).
- Qian, M.; Jiang, J. COVID-19 and social distancing. J. Public Health 2020, 1–3. [Google Scholar] [CrossRef] [PubMed]
- MAGS (Ministerium für Arbeit, Gesundheit und Soziales des Landes Nordrhein-Westfalen). Erlass zu Weiteren Kontaktreduzierenden Maßnahmen ab dem 16.03.2020 und 17.03.2020. 2020. Available online: https://www.land.nrw/sites/default/files/asset/document/200315_erlass_weitere_kontaktreduzierende_massnahmen.pdf (accessed on 2 December 2020).
- World Health Organization (WHO) Regional Office for Europe. Environmental Noise Guidelines for the European Region. 2018. Available online: http://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-guidelines-eng.pdf?ua=1 (accessed on 19 December 2019).
- European Environment Agency (EEA). Exposure of Europe’s Population to Environmental Noise. 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/exposure-to-and-annoyance-by-2/assessment-4 (accessed on 17 January 2021).
- Bundesanstalt für Straßenwesen (BAST) Auswirkungen der Corona-Pandemie 2020 auf den Straßenverkehr an 359 Dauerzählstellen (DZ) und Achslastmessstellen (AMS) auf BAB. 2020. Available online: https://www.bast.de/BASt_2017/DE/Statistik/Verkehrsdaten/VerkehrsbarometerDL.pdf;jsessionid=3CE28300566872D56519FD4E59D546EF.live21304?__blob=publicationFile&v=19 (accessed on 20 April 2021).
- Deutsche Bahn. Kennzahlen zu den Auswirkungen der Coronavirus-Krise auf den Passagierverkehr der Deutschen Bahn im Vergleich zum Normalniveau (As of 22 April 2020) [Graph]. Statista. 2020. Available online: https://de.statista.com/statistik/daten/studie/1112176/umfrage/auswirkungen-der-coronavirus-krise-auf-den-passagierverkehr-der-deutschen-bahn/ (accessed on 3 December 2020).
- DLR (Deutsches Zentrum für Luft- und Raumfahrt). Global Aviation Monitor (GAM). Analysis and Short Term Outlook of Global, European and German Air Transport. 2020. Available online: https://elib.dlr.de/136425/1/DLR_GAM_021020_engl_final.pdf (accessed on 11 February 2020).
- Acoucite. Confinement COVID-19: Impact Sur L’environnement Sonore. 2020. Available online: http://www.acoucite.org/confinement-covid-19-impact-sur-lenvironnement-sonore/ (accessed on 26 November 2020).
- Parker, M.; Spennemann, D.H. Anthropause on audio: The effects of the COVID-19 pandemic on church bell ringing and associated soundscapes in New South Wales (Australia). J. Acoust. Soc. Am. 2020, 148, 3102–3106. [Google Scholar] [CrossRef] [PubMed]
- Spennemann, D.H.; Parker, M. Hitting the ‘pause’button: What does COVID-19 tell us about the future of heritage sounds? Noise Mapp. 2020, 7, 265–275. [Google Scholar] [CrossRef]
- Bruitparif. Les Effets du Confinement sur le Bruit en Ile-de-France. 2020. Available online: www.bruitparif.fr/pages/Actualites/2020-07-13%20Suivi%20des%20modifications%20de%20l’environnement%20sonore%20en%20lien%20avec%20le%20confinement%20et%20le%20d%C3%A9confinement/2020-07-13%20-%20Rapport%20-%20Les%20effets%20du%20confinement%20et%20du%20d%C3%A9confinement%20sur%20le%20bruit%20en%20%C3%8Ele-de-France.pdf (accessed on 16 November 2020).
- Asensio, C.; Pavón, I.; De Arcas, G. Changes in noise levels in the city of Madrid during COVID-19 lockdown in 2020. J. Acoust. Soc. Am. 2020, 148, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Aletta, F.; Oberman, T.; Mitchell, A.; Tong, H.; Kang, J. Assessing the changing urban sound environment during the COVID-19 lockdown period using short-term acoustic measurements. Noise Mapp. 2020, 7, 123–134. [Google Scholar] [CrossRef]
- Basu, B.; Murphy, E.; Molter, A.; Basu, A.; Sannigrahi, S.; Belmonte, M.; Pilla, F. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 2020, 65, 102597. [Google Scholar] [CrossRef]
- Rumpler, R.; Venkataraman, S.; Göransson, P. An observation of the impact of CoViD-19 recommendation measures monitored through urban noise levels in central Stockholm, Sweden. Sustain. Cities Soc. 2020, 63, 102469. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, R.; Lawrence, B.T.; Ahmed, S.; Gruehn, D.; Moebus, S. Acoustic quality and health in urban environments (SALVE)–a pilot study in the metropolitan Ruhr region, Germany. Cities Health 2020. [Google Scholar] [CrossRef]
- Haselhoff, T.; Lawrence, B.; Hornberg, J.; Ahmed, S.; Sutcliffe, R.; Gruehn, D.; Moebus, S. The acoustic quality and health in urban environments (SALVE) project: Study design, rationale and methodology. medRxiv 2021. [Google Scholar] [CrossRef]
- Regionalverband Ruhr. Regionalstatistik. 2020. Available online: https://www.rvr.ruhr/fileadmin/user_upload/01_RVR_Home/03_Daten_Digitales/Regionalstatistik/03_Publikationen/2020-10_Regionalstatistik_Ruhr_Mit_Schmackes_Demografischer_Wandel.pdf (accessed on 14 December 2020).
- MAGS (Ministerium für Arbeit, Gesundheit und Soziales des Landes Nordrhein-Westfalen). Verordnung zum Schutz vor Neuinfizierungen mit dem Coronavirus SARS-CoV-2. 2020. Available online: https://www.land.nrw/sites/default/files/asset/document/2020-03-22_coronaschvo_nrw.pdf (accessed on 2 December 2020).
- Robert Koch Institut (RKI) Epidemiologisches Bulletin 7/2020. SARS-CoV-2 in Deutschland und Ziele von Infektionsschutzmaßnahmen. 2020. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/07_20.pdf?__blob=publicationFile (accessed on 22 April 2021).
- Regionalverband Ruhr. Flächennutzungskartierung. Daten für die Stadt- und Regionalplanung. 2020. Available online: https://www.rvr.ruhr/daten-digitales/geodaten/flaechennutzungskartierung/ (accessed on 2 December 2020).
- Pölling, B.; Born, R. Urban farming in the Ruhr metropolitan region. Nat. Landsch. Online Nat. Landsch. 2015, 90, 8. [Google Scholar] [CrossRef]
- Wildlife Acoustics. Kaleidoscope Pro Analysis Software; Wildlife Acoustics, Inc.: Maynard, MA, USA, 2019; Available online: https://www.wildlifeacoustics.com/products/kaleidoscope-pro (accessed on 28 January 2021).
- Zambon, G.; Confalonieri, C.; Angelini, F.; Benocci, R. Effects of COVID-19 outbreak on the sound environment of the city of Milan, Italy. Noise Mapp. 2021, 8, 116–128. [Google Scholar] [CrossRef]
- Smith, L.M.; Wang, L.; Mazur, K.; Carchia, M.; DePalma, G.; Azimi, R.; Mravca, S.; Neitze, R.L. Impacts of COVID-19-related social distancing measures on personal environmental sound exposures. Environ. Res. Lett. 2020, 15, 104094. [Google Scholar] [CrossRef]
- Manzano, J.V.; Pastor, J.A.A.; Quesada, R.G.; Aletta, F.; Oberman, T.; Mitchell, A.; Kang, J. The “sound of silence” in Granada during the COVID-19 lockdown. Noise Mapp. 2021, 8, 16–31. [Google Scholar] [CrossRef]
- Dance, S.; McIntyre, L. The quiet project–UK acoustic community’s response to COVID19 during the easing of lockdown. Noise Mapp. 2021, 8, 32–40. [Google Scholar] [CrossRef]
- Straßen.NRWa. Veränderung der Verkehrsstärke auf Ausgewählten Autobahnabschnitten zu 2019. 2020. Available online: http://www.strassen.nrw.de/files/oe/1aktuell/gesamt.pdf (accessed on 2 December 2020).
- Straßen.NRWb. Verkehrs-und Unfallentwicklung auf Außerortsstraßen in NRW. 2020. Available online: https://www.strassen.nrw.de/files/oe/verkehrsdaten/monatsdaten/2020/03-maerz-2020.pdf (accessed on 22 April 2020).
- Jackson, I.R.; Kendrick, P.; Cox, T.J.; Fazenda, B.M.; Li, F.F. Perception and automatic detection of wind-induced microphone noise. J. Acoust. Soc. Am. 2014, 136, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Trikootam, S.C.; Hornikx, M. The wind effect on sound propagation over urban areas: Experimental approach with an uncontrolled sound source. Build. Environ. 2019, 149, 561–570. [Google Scholar] [CrossRef]
- Jin, Y.; Jin, H.; Kang, J.; Yu, Z. Effects of openings on the wind–sound environment in the traditional residential streets in a severe cold city of China. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 808–825. [Google Scholar] [CrossRef]
- Van Kempen, E.; Casas, M.; Pershagen, G.; Foraster, M. WHO environmental noise guidelines for the European region: A systematic review on environmental noise and cardiovascular and metabolic effects: A summary. Int. J. Environ. Res. Public Health 2018, 15, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hünewaldt, E. New Mobililty and The Sustainable Development Goals. 2018. Available online: www.green-venture.net/New-Mobililty-and-The-Sustainable-Development-Goals_2423.aspx (accessed on 31 January 2021).
- Susilo, Y.; Williams, K.; Lindsay, M.; Dair, C. The influence of individuals’ environmental attitudes and urban design features on their travel patterns in sustainable neighborhoods in the UK. Transp. Res. Part D Transp. Environ. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Tight, M.; Timms, P.; Banister, D.; Bowmaker, J.; Copas, J.; Day, A.; Drinkwater, D.; Givoni, M.; Gühnemann, A.; Lawler, M.; et al. Visions for a walking and cycling focussed urban transport system. J. Transp. Geogr. 2011, 19, 1580–1589. [Google Scholar] [CrossRef]
Noise Levels (LAeq,35d) [dB] | |||
---|---|---|---|
Land Use Category | Differences (Δ) | ||
Mean ± SD | Mean ± SD | ||
Forest | 50.9 ± 6.6 | 45 ± 6.2 | −5.9 |
Green space | 56.2 ± 5.8 | 50.3 ± 6.0 | −5.9 |
Small garden near house | 55.8 ± 6.4 | 51.5 ± 7.0 | −4.3 |
Agricultural land | 54.0 ± 6.8 | 47.6 ± 5.7 | −6.4 |
Play or sportsground | 55.4 ± 6.1 | 50.2 ± 6.5 | −5.2 |
Residential area | 55.2 ± 6.4 | 49.3 ± 7.2 | −5.9 |
Residential street | 60.6 ± 8.0 | 55.6 ± 8.7 | −5.0 |
Parking lot | 61.0 ± 6.3 | 55.9 ± 5.3 | −5.1 |
Commercial area | 68.4 ± 6.7 | 64.5 ± 8.0 | −3.9 |
All | 58.0 ± 8.3 | 52.9 ± 8.9 | −5.1 |
Time 24-h Clock | Noise Levels (LAeq.35d) [dB] | ||
---|---|---|---|
Differences (Δ) | |||
Mean ± SD | Mean ± SD | ||
0 | 53.4 ± 8.1 | 46.3 ± 8.0 | −7.1 |
1 | 52.0 ± 7.8 | 44.6 ± 6.5 | −7.4 |
2 | 51.9 ± 7.5 | 44.6 ± 6.4 | −7.3 |
3 | 52.6 ± 7.3 | 45.7 ± 6.6 | −6.9 |
4 | 54.6 ± 7.6 | 48.9 ± 7.4 | −5.7 |
5 | 57.1 ± 7.8 | 54.3 ± 7.5 | −2.8 |
6 | 59.5 ± 7.2 | 57.8 ± 6.3 | −1.7 |
7 | 60.9 ± 7.1 | 57.2 ± 7.1 | −3.7 |
8 | 60.9 ± 7.2 | 56.9 ± 7.1 | −4.0 |
9 | 61.3 ± 6.8 | 57.1 ± 7.5 | −4.2 |
10 | 61.3 ± 7.1 | 57.0 ± 7.5 | −4.3 |
11 | 61.0 ± 7.4 | 56.8 ± 7.5 | −4.2 |
12 | 61.1 ± 7.5 | 56.6 ± 7.7 | −4.5 |
13 | 60.8 ± 7.3 | 56.6 ± 7.9 | −4.2 |
14 | 61.0 ± 8.2 | 56.7 ± 8.3 | −4.3 |
15 | 60.3 ± 7.7 | 56.3 ± 8.6 | −4.0 |
16 | 59.8 ± 7.7 | 55.8 ± 8.1 | −4.0 |
17 | 60.2 ± 7.3 | 55.4 ± 7.9 | −4.8 |
18 | 59.8 ± 7.4 | 55.0 ± 7.6 | −4.8 |
19 | 58.2 ± 8.1 | 53.9 ± 7.9 | −4.3 |
20 | 56.9 ± 8.6 | 52.5 ± 8.3 | −4.4 |
21 | 57.7 ± 7.5 | 50.0 ± 8.7 | −7.7 |
22 | 56.0 ± 8.1 | 48.6 ± 8.3 | −7.4 |
23 | 54.2 ± 8.5 | 47.0 ± 8.0 | −7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornberg, J.; Haselhoff, T.; Lawrence, B.T.; Fischer, J.L.; Ahmed, S.; Gruehn, D.; Moebus, S. Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas—A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany. Int. J. Environ. Res. Public Health 2021, 18, 4653. https://doi.org/10.3390/ijerph18094653
Hornberg J, Haselhoff T, Lawrence BT, Fischer JL, Ahmed S, Gruehn D, Moebus S. Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas—A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany. International Journal of Environmental Research and Public Health. 2021; 18(9):4653. https://doi.org/10.3390/ijerph18094653
Chicago/Turabian StyleHornberg, Jonas, Timo Haselhoff, Bryce T. Lawrence, Jonas L. Fischer, Salman Ahmed, Dietwald Gruehn, and Susanne Moebus. 2021. "Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas—A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany" International Journal of Environmental Research and Public Health 18, no. 9: 4653. https://doi.org/10.3390/ijerph18094653
APA StyleHornberg, J., Haselhoff, T., Lawrence, B. T., Fischer, J. L., Ahmed, S., Gruehn, D., & Moebus, S. (2021). Impact of the COVID-19 Lockdown Measures on Noise Levels in Urban Areas—A Pre/during Comparison of Long-Term Sound Pressure Measurements in the Ruhr Area, Germany. International Journal of Environmental Research and Public Health, 18(9), 4653. https://doi.org/10.3390/ijerph18094653