Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Test Procedure
2.4. Data Analysis and Statistical Analysis
3. Results
3.1. Demographic and Physical Characteristics of the Participants
3.2. Group Differences: 60s vs. 70s and Males vs. Females
3.3. Classifier Variables for Age-Specific Groups and Sex-Specific Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raz, N.; Rodrigue, K.M.; Kennedy, K.M.; Head, D.; Gunning-Dixon, F.; Acker, J.D. Differential aging of the human striatum: Longitudinal evidence. AJNR Am. J. Neuroradiol. 2003, 24, 1849–1856. [Google Scholar]
- Grimmer, M.; Riener, R.; Walsh, C.J.; Seyfarth, A. Mobility related physical and functional losses due to aging and disease—A motivation for lower limb exoskeletons. J. Neuroeng. Rehabil. 2019, 16, 1–21. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Kiechl, S.; Bloem, B.R.; Willeit, J.; Scherfler, C.; Gasperi, A.; Rungger, G.; Poewe, W.; Seppi, K. Prevalence and burden of gait disorders in elderly men and women aged 60-97 years: A population-based study. PLoS ONE 2013, 8, e69627. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting gait with an accelerometer: A system and algorithm examination. Med. Eng. Phys. 2015, 37, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.; Galna, B.; Rochester, L. Moving forward on gait measurement: Toward a more refined approach. Mov. Disord. 2013, 28, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 2007, 26, 555–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabell, A.; Nayak, U.S. The effect of age on variability in gait. J. Gerontol. 1984, 39, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Gait variability: Methods, modeling and meaning. J. Neuroeng. Rehabil. 2005, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M. Stride variability: Beyond length and frequency. Gait Posture 2004, 20, 304. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, M.; Youm, C.; Noh, B.; Park, H. Association between Gait Variability and Gait-Ability Decline in Elderly Women with Subthreshold Insomnia Stage. Int. J. Environ. Res. Public Health 2020, 17, 5181. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, S.M.; Xu, H.Z.; Kuo, A.D. Energetic cost of walking with increased step variability. Gait Posture 2012, 36, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Brach, J.S.; Studenski, S.A.; Perera, S.; VanSwearingen, J.M.; Newman, A.B. Gait variability and the risk of incident mobility disability in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 983–988. [Google Scholar] [CrossRef]
- Brach, J.S.; Berlin, J.E.; VanSwearingen, J.M.; Newman, A.B.; Studenski, S.A. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J. Neuroeng. Rehabil. 2005, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchet, O.; Allali, G.; Annweiler, C.; Bridenbaugh, S.; Assal, F.; Kressig, R.W.; Herrmann, F.R. Gait variability among healthy adults: Low and high stride-to-stride variability are both a reflection of gait stability. Gerontology 2009, 55, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Callisaya, M.L.; Blizzard, L.; McGinley, J.L.; Schmidt, M.D.; Srikanth, V.K. Sensorimotor factors affecting gait variability in older people—a population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Verlinden, V.J.; van der Geest, J.N.; Hoogendam, Y.Y.; Hofman, A.; Breteler, M.M.; Ikram, M.A. Gait patterns in a community-dwelling population aged 50 years and older. Gait Posture 2013, 37, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Beauchet, O.; Allali, G.; Sekhon, H.; Verghese, J.; Guilain, S.; Steinmetz, J.P.; Kressig, R.W.; Barden, J.M.; Szturm, T.; Launay, C.P.; et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The Biomathics and Canadian Gait Consortiums initiative. Front. Hum. Neurosci. 2017, 11, 353. [Google Scholar] [CrossRef]
- Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Rennie, L.; Löfgren, N.; Moe-Nilssen, R.; Opheim, A.; Dietrichs, E.; Franzén, E. The reliability of gait variability measures for individuals with Parkinson’s disease and healthy older adults—The effect of gait speed. Gait Posture 2018, 62, 505–509. [Google Scholar] [CrossRef]
- Riley, P.O.; Paolini, G.; Della Croce, U.; Paylo, K.W.; Kerrigan, D.C. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture 2007, 26, 17–24. [Google Scholar] [CrossRef]
- Hollman, J.H.; Watkins, M.K.; Imhoff, A.C.; Braun, C.E.; Akervik, K.A.; Ness, D.K. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture 2016, 43, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Watt, J.R.; Franz, J.R.; Jackson, K.; Dicharry, J.; Riley, P.O.; Kerrigan, D.C. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin. Biomech. 2010, 25, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Frenkel-Toledo, S.; Giladi, N.; Peretz, C.; Herman, T.; Gruendlinger, L.; Hausdorff, J.M. Effect of gait speed on gait rhythmicity in Parkinson’s disease: Variability of stride time and swing time respond differently. J. Neuroeng. Rehabil. 2005, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Youm, C.; Noh, B.; Park, H. Gait Characteristics Based on Shoe-Type Inertial Measurement Units in Healthy Young Adults during Treadmill Walking. Sensors 2020, 20, 2095. [Google Scholar] [CrossRef] [Green Version]
- Wuehr, M.; Schniepp, R.; Pradhan, C.; Ilmberger, J.; Strupp, M.; Brandt, T.; Jahn, K. Differential effects of absent visual feedback control on gait variability during different locomotion speeds. Exp. Brain Res. 2013, 224, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Youm, C.; Lee, M.; Park, H. Associating Gait Phase and Physical Fitness with Global Cognitive Function in the Aged. Int. J. Environ. Res. Public Health 2020, 17, 4786. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Youm, C.; Lee, M.; Park, H. Age-specific differences in gait domains and global cognitive function in older women: Gait characteristics based on gait speed modification. PeerJ 2020, 8, e8820. [Google Scholar] [CrossRef] [Green Version]
- Almarwani, M.; VanSwearingen, J.M.; Perera, S.; Sparto, P.J.; Brach, J.S. Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Arch. Gerontol. Geriatr. 2016, 66, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Youm, C.; Jeon, J.; Cheon, S.M.; Park, H. Validity of shoe-type inertial measurement units for Parkinson’s disease patients during treadmill walking. J. Neuroeng. Rehabil. 2018, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Joo, J.Y.; Jeong, S.H.; Jeon, J.H.; Jung, D.Y. Effects of walking speed and age on the directional stride regularity and gait variability in treadmill walking. J. Mech. Sci. Technol. 2016, 30, 2899–2906. [Google Scholar] [CrossRef]
- Oyeyemi, A.L.; Umar, M.; Oguche, F.; Aliyu, S.U.; Oyeyemi, A.Y. Accelerometer-determined physical activity and its comparison with the International Physical Activity Questionnaire in a sample of Nigerian adults. PLoS ONE 2014, 9, e87233. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Plotnik, M.; Giladi, N.; Hausdorff, J.M. A new measure for quantifying the bilateral coordination of human gait: Effects of aging and Parkinson’s disease. Exp. Brain Res. 2007, 181, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences the Behavioural Sciences; Elsevier: New York, NY, USA, 1977. [Google Scholar]
- Kang, H.G.; Dingwell, J.B. Separating the effects of age and walking speed on gait variability. Gait Posture 2008, 27, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B.; Salinas, M.M.; Cusumano, J.P. Increased gait variability may not imply impaired stride-to-stride control of walking in healthy older adults: Winner: 2013 Gait and Clinical Movement Analysis Society Best Paper Award. Gait Posture 2017, 55, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Nutt, J.G.; Marsden, C.D.; Thompson, P.D. Human walking and higher-level gait disorders, particularly in the elderly. Neurology 1993, 43, 268–279. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and gait variability–a population-based study of older people. Age Ageing 2010, 39, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Hughes-Oliver, C.N.; Srinivasan, D.; Schmitt, D.; Queen, R.M. Gender and limb differences in temporal gait parameters and gait variability in ankle osteoarthritis. Gait Posture 2018, 65, 228–233. [Google Scholar] [CrossRef]
- Johansson, J.; Nordström, A.; Nordström, P. Greater fall risk in elderly women than in men is associated with increased gait variability during multitasking. J. Am. Med. Dir. Assoc. 2016, 17, 535–540. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Aboutorabi, A.; Arazpour, M.; Bahramizadeh, M.; Hutchins, S.W.; Fadayevatan, R. The effect of aging on gait parameters in able-bodied older subjects: A literature review. Aging Clin. Exp. Res. 2016, 28, 393–405. [Google Scholar] [CrossRef]
- Plotnik, M.; Bartsch, R.P.; Zeev, A.; Giladi, N.; Hausdorff, J.M. Effects of walking speed on asymmetry and bilateral coordination of gait. Gait Posture 2013, 38, 864–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neptune, R.R.; Sasaki, K.; Kautz, S.A. The effect of walking speed on muscle function and mechanical energetics. Gait Posture 2008, 28, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orendurff, M.S.; Segal, A.D.; Klute, G.K.; Berge, J.S.; Rohr, E.S.; Kadel, N.J. The effect of walking speed on center of mass displacement. J. Rehabil. Res. Dev. 2004, 41, 829–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Otter, A.R.; Geurts, A.C.; Mulder, T.; Duysens, J. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture 2004, 19, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Schneider, W.; Chein, J.M. Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cogn. Sci. 2003, 27, 525–559. [Google Scholar]
- Clark, D.J. Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 2015, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Geyer, H. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 2015, 593, 3493–3511. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.; Zangla, D.; Sahin, F.N.; Cataldi, S.; Lavanco, G.; Palma, A.; Fischietti, F. Physical exercise and prevention of falls. Effects of a Pilates training method compared with a general physical activity program: A randomized controlled trial. Medicine 2021, 100, e25289. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, G.; Giustino, V.; Messina, G.; Faraone, M.; Brusa, J.; Bordonali, A.; Barbagallo, M.; Palma, A.; Dominguez, L.-J. Walking in Natural Environments as Geriatrician’s Recommendation for Fall Prevention: Preliminary Outcomes from the “Passiata Day” Model. Sustainability 2020, 12, 2684. [Google Scholar] [CrossRef] [Green Version]
Variables | Males (n = 85) | Females (n = 140) | Age | Sex | |||||
---|---|---|---|---|---|---|---|---|---|
p Value | d | p Value | d | ||||||
Age (years) | 60s | 66.64 ± 2.05 | 65.55 ± 2.41 | M | <0.001 | 3.006 | 60s | 0.014 | 0.479 |
70s | 73.72 ± 2.62 | 72.70 ± 2.73 | F | <0.001 | 2.791 | 70s | 0.057 | 0.380 | |
Height (cm) | 60s | 168.90 ± 4.74 | 154.82 ± 4.59 | M | 0.077 | 0.388 | 60s | <0.001 | 3.033 |
70s | 166.96 ± 5.21 | 153.49 ± 5.21 | F | 0.109 | 0.274 | 70s | <0.001 | 2.586 | |
Body mass (kg) | 60s | 70.39 ± 7.07 | 58.40 ± 6.20 | M | 0.121 | 0.340 | 60s | <0.001 | 1.839 |
70s | 67.56 ± 9.40 | 59.45 ± 7.55 | F | 0.367 | 0.154 | 70s | <0.001 | 0.971 | |
BMI (kg/m2) | 60s | 24.68 ± 2.36 | 24.36 ± 2.37 | M | 0.510 | 0.143 | 60s | 0.492 | 0.132 |
70s | 24.26 ± 3.38 | 25.25 ± 3.07 | F | 0.058 | 0.325 | 70s | 0.122 | 0.308 | |
BFP (%) | 60s | 24.00 ± 5.16 | 34.01 ± 5.80 | M | 0.312 | 0.221 | 60s | <0.001 | 1.792 |
70s | 25.20 ± 5.66 | 34.32 ± 6.05 | F | 0.753 | 0.054 | 70s | <0.001 | 1.547 | |
SBP (mmHg) | 60s | 131.48 ± 16.55 | 128.70 ± 13.72 | M | 0.916 | 0.037 | 60s | 0.329 | 0.188 |
70s | 132.02 ± 12.73 | 134.35 ± 15.40 | F | 0.021 | 0.390 | 70s | 0.382 | 0.162 | |
DBP (mmHg) | 60s | 85.48 ± 8.28 | 82.01 ± 9.04 | M | 0.018 | 0.543 | 60s | 0.042 | 0.394 |
70s | 80.60 ± 9.59 | 82.57 ± 10.54 | F | 0.821 | 0.057 | 70s | 0.382 | 0.193 | |
MMSE (score) | 60s | 28.07 ± 1.92 | 27.43 ± 1.76 | M | 0.363 | 0.198 | 60s | 0.067 | 0.354 |
70s | 27.67 ± 2.08 | 27.71 ± 2.00 | F | 0.371 | 0.153 | 70s | 0.921 | 0.020 | |
IPAQ-SF (MET-min/week) | 60s | 5215.56 ± 4679.71 | 3141.58 ± 2000.03 | M | 0.735 | 0.074 | 60s | <0.001 | 0.647 |
70s | 5507.12 ± 3106.27 | 3070.56 ± 2969.02 | F | 0.867 | 0.029 | 70s | <0.001 | 0.805 | |
Education (years) | 60s | 12.36 ± 2.88 | 9.13 ± 2.54 | M | 0.057 | 0.419 | 60s | <0.001 | 1.213 |
70s | 11.00 ± 3.56 | 9.44 ± 2.50 | F | 0.464 | 0.125 | 70s | 0.009 | 0.523 | |
Number of falls (N) | 60s | 0.02 ± 0.15 | 0.30 ± 0.63 | M | 0.131 | 0.331 | 60s | 0.006 | 0.533 |
70s | 0.14 ± 0.47 | 0.19 ± 0.53 | F | 0.281 | 0.184 | 70s | 0.614 | 0.100 | |
Walking speed (m/s) | |||||||||
Slower speed | 60s | 0.88 ± 0.17 | 0.82 ± 0.11 | M | 0.997 | 0.006 | 60s | 0.034 | 0.412 |
70s | 0.88 ± 0.16 | 0.76 ± 0.17 | F | 0.006 | 0.472 | 70s | <0.001 | 0.715 | |
Preferred speed | 60s | 1.10 ± 0.21 | 1.03 ± 0.13 | M | 0.891 | 0.030 | 60s | 0.031 | 0.418 |
70s | 1.09 ± 0.20 | 0.96 ± 0.19 | F | 0.013 | 0.426 | 70s | 0.001 | 0.672 | |
Faster speed | 60s | 1.31 ± 0.25 | 1.23 ± 0.16 | M | 0.982 | 0.005 | 60s | 0.048 | 0.383 |
70s | 1.31 ± 0.25 | 1.15 ± 0.23 | F | 0.014 | 0.423 | 70s | 0.001 | 0.676 |
Variables | Slower Speed | Preferred Speed | Faster Speed | Age Group Significance | Sex Group Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Males | Females | Males | Females | Males | Females | Males | Females | 60s | 70s | ||
CV of stride length (%) | 60s | 2.61 ± 1.12 | 2.81 ± 1.09 | 1.86 ± 0.74 | 1.81 ± 0.52 | 1.55 ± 0.46 | 1.47 ± 0.44 | N/S | A, B, C | G | N/S |
70s | 2.90 ± 1.33 | 3.25 ± 1.09 | 1.94 ± 0.68 | 2.15 ± 0.73 | 1.71 ± 0.75 | 1.81 ± 0.61 | |||||
CV of stride time (%) | 60s | 2.61 ± 1.12 | 2.81 ± 1.09 | 1.86 ± 0.74 | 1.81 ± 0.52 | 1.55 ± 0.46 | 1.47 ± 0.44 | N/S | A, B, C | G | N/S |
70s | 2.90 ± 1.33 | 3.25 ± 1.09 | 1.94 ± 0.68 | 2.15 ± 0.73 | 1.71 ± 0.75 | 1.81 ± 0.61 | |||||
CV of single support phase (%) | 60s | 5.39 ± 2.40 | 5.43 ± 1.71 | 3.57 ± 1.47 | 3.42 ± 0.97 | 2.77 ± 0.95 | 2.65 ± 0.75 | N/S | A, B, C | N/S | N/S |
70s | 5.31 ± 2.01 | 6.36 ± 1.97 | 3.43 ± 1.23 | 3.99 ± 1.22 | 2.85 ± 0.96 | 3.13 ± 0.84 | |||||
CV of double support phase (%) | 60s | 9.23 ± 4.30 | 8.20 ± 2.87 | 6.12 ± 2.03 | 6.17 ± 1.92 | 5.98 ± 2.07 | 5.53 ± 1.40 | B | N/S | N/S | N/S |
70s | 9.26 ± 3.89 | 9.21 ± 3.62 | 7.07 ± 2.27 | 6.52 ± 1.77 | 6.14 ± 1.96 | 5.84 ± 1.59 | |||||
CV of stance phase (%) | 60s | 4.01 ± 1.80 | 4.10 ± 1.34 | 2.62 ± 1.06 | 2.43 ± 0.64 | 2.04 ± 0.68 | 1.85 ± 0.51 | N/S | A, B, C | G | N/S |
70s | 4.13 ± 1.75 | 4.65 ± 1.60 | 2.67 ± 0.85 | 2.83 ± 1.04 | 2.17 ± 0.84 | 2.23 ± 0.81 | |||||
GA | 60s | 2.80 ± 2.06 | 2.98 ± 2.14 | 2.46 ± 1.47 | 2.09 ± 1.36 | 1.90 ± 1.29 | 1.84 ± 1.09 | N/S | B | F | F, G |
70s | 2.84 ± 2.14 | 3.59 ± 2.62 | 1.89 ± 1.29 | 2.81 ± 2.09 | 1.51 ± 1.14 | 2.27 ± 1.81 | |||||
PCI | 60s | 4.70 ± 1.61 | 4.91 ± 2.03 | 3.62 ± 1.42 | 3.92 ± 1.35 | 3.36 ± 2.00 | 3.60 ± 1.71 | N/S | N/S | N/S | N/S |
70s | 4.89 ± 1.82 | 5.32 ± 2.38 | 3.72 ± 1.20 | 4.02 ± 1.45 | 3.37 ± 1.18 | 3.67 ± 1.86 |
Variables | Estimate | SE | OR | 95% CI for OR | p Value | RN2 |
---|---|---|---|---|---|---|
Male | ||||||
P_CV of double support phase (%) | 0.505 | 0.240 | 1.658 | 1.035–2.655 | 0.036 | 0.128 |
Female | ||||||
F_CV of stride length (%) | 0.778 | 0.240 | 2.176 | 1.361–3.481 | 0.001 | 0.217 |
P_GA | 0.423 | 0.192 | 1.526 | 1.048–2.222 | 0.027 |
Variables | Estimate | SE | OR | 95% CI for OR | p Value | RN2 |
---|---|---|---|---|---|---|
Aged 60~69 | ||||||
F_CV of stance phase (%) | −0.813 | 0.351 | 0.443 | 0.223–0.882 | 0.020 | 0.461 |
P_GA | −0.632 | 0.289 | 0.532 | 0.302–0.936 | 0.029 | |
Aged 70~79 | ||||||
P_GA | 0.692 | 0.281 | 1.998 | 1.152–3.464 | 0.014 | 0.349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Youm, C.; Park, H.; Lee, M.; Noh, B. Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation. Int. J. Environ. Res. Public Health 2021, 18, 4704. https://doi.org/10.3390/ijerph18094704
Kim B, Youm C, Park H, Lee M, Noh B. Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation. International Journal of Environmental Research and Public Health. 2021; 18(9):4704. https://doi.org/10.3390/ijerph18094704
Chicago/Turabian StyleKim, Bohyun, Changhong Youm, Hwayoung Park, Myeounggon Lee, and Byungjoo Noh. 2021. "Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation" International Journal of Environmental Research and Public Health 18, no. 9: 4704. https://doi.org/10.3390/ijerph18094704
APA StyleKim, B., Youm, C., Park, H., Lee, M., & Noh, B. (2021). Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation. International Journal of Environmental Research and Public Health, 18(9), 4704. https://doi.org/10.3390/ijerph18094704