Association between Social Integration and Face Mask Use Behavior during the SARS-CoV-2 Pandemic in Japan: Results from U-CORONA Study
Abstract
:1. Introduction
2. Methods
2.1. Sample
2.2. Measures
2.2.1. Independent Variables
Social Integration
Covariates
Biomarkers
2.2.2. Dependent Variables
Mask Use
2.3. Analysis
3. Result
3.1. Demographic Characteristics of Study Participants by Mask Use Behavior
3.2. The Other Characteristics of People by Mask Use Behavior
3.3. Associations between Social Integration and Mask Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honein, M.A.; Christie, A.; Rose, D.A.; Brooks, J.T.; Meaney-Delman, D.; Cohn, A.; Sauber-Schatz, E.K.; Walker, A.; McDonald, L.C.; Liburd, L.C.; et al. Summary of Guidance for Public Health Strategies to Address High Levels of Community Transmission of SARS-CoV-2 and Related Deaths, December 2020. MMWR Morb Mortal Wkly Rep. 2020, 69, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Moghadas, S.M.; Fitzpatrick, M.C.; Sah, P.; Pandey, A.; Shoukat, A.; Singer, B.H.; Galvani, A.P. The implications of silent transmission for the control of COVID-19 outbreaks. Proc. Natl. Acad. Sci. USA 2020, 117, 17513–17515. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schunemann, H.J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- YouGov COVID-19 Behaviour Changes Tracker: Wearing a Face Mask When in Public Places. Available online: https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19 (accessed on 7 December 2020).
- A Detailed Map of Who Is Wearing Masks in the U.S. The New York Times. Available online: https://www.nytimes.com/interactive/2020/07/17/upshot/coronavirus-face-mask-map.html (accessed on 7 December 2020).
- Ministry of Health, Labour and Welfare, Japan Winter Corona Measures. Available online: https://www.mhlw.go.jp/stf/newpage_14992.html (accessed on 7 December 2020).
- Haischer, M.H.; Beilfuss, R.; Hart, M.R.; Opielinski, L.; Wrucke, D.; Zirgaitis, G.; Uhrich, T.D.; Hunter, S.K. Who is wearing a mask? Gender-, age-, and location-related differences during the COVID-19 pandemic. PLoS ONE 2020, 15, e0240785. [Google Scholar] [CrossRef] [PubMed]
- Pew Research Center Republicans, Democrats Move Even Further Apart in Coronavirus Concerns. Available online: https://www.pewresearch.org/politics/2020/06/25/republicans-democrats-move-even-further-apart-in-coronavirus-concerns/ (accessed on 7 December 2020).
- Shelus, V.S.; Frank, S.C.; Lazard, A.J.; Higgins, I.C.A.; Pulido, M.; Richter, A.P.C.; Vandegrift, S.M.; Vereen, R.N.; Ribisl, K.M.; Hall, M.G. Motivations and Barriers for the Use of Face Coverings during the COVID-19 Pandemic: Messaging Insights from Focus Groups. Int. J. Environ. Res. Public Health 2020, 17, 9298. [Google Scholar] [CrossRef] [PubMed]
- Barile, J.P.; Guerin, R.J.; Fisher, K.A.; Tian, L.H.; Okun, A.H.; Vanden Esschert, K.L.; Jeffers, A.; Gurbaxani, B.M.; Thompson, W.W.; Prue, C.E. Theory-based Behavioral Predictors of Self-reported Use of Face Coverings in Public Settings during the COVID-19 Pandemic in the United States. Ann. Behav. Med. 2021, 55, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Van der Westhuizen, H.M.; Kotze, K.; Tonkin-Crine, S.; Gobat, N.; Greenhalgh, T. Face coverings for covid-19: From medical intervention to social practice. BMJ 2020, 370, m3021. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Underwood, L.G.; Gottlieb, B.H. (Eds.) Social Support Measurement and Intervention: A Guide for Health and Social Scientists; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Berkman, L.F.; Glass, T.; Brissette, I.; Seeman, T.E. From social integration to health: Durkheim in the new millennium. Soc. Sci. Med. 2000, 51, 843–857. [Google Scholar] [CrossRef]
- Cohen, S. Social relationships and health. Am. Psychol. 2004, 59, 676. [Google Scholar] [CrossRef] [PubMed]
- Berkman, L.F.; Kawachi, I.; Glymour, M.M. (Eds.) Social Epidemiology; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Durkheim, E. Suicide: A Study in Sociology; Free Press: Glencoe, IL, USA, 1951; Original work published 1897. [Google Scholar]
- Cohen, S.; Lemay, E.P. Why would social networks be linked to affect and health practices? Health Psychol. 2007, 26, 410–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onnela, J.P.; Landon, B.E.; Kahn, A.L.; Ahmed, D.; Verma, H.; O’Malley, A.J.; Bahl, S.; Sutter, R.W.; Christakis, N.A. Polio vaccine hesitancy in the networks and neighborhoods of Malegaon, India. Soc. Sci. Med. 2016, 153, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Doyle, W.J.; Skoner, D.P.; Rabin, B.S.; Gwaltney, J.M., Jr. Social ties and susceptibility to the common cold. JAMA 1997, 277, 1940–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.; Lin, L.; Viswanath, K. Associations between health communication behaviors, neighborhood social capital, vaccine knowledge, and parents’ H1N1 vaccination of their children. Vaccine 2013, 31, 4860–4866. [Google Scholar] [CrossRef] [PubMed]
- Sampson, R.J.; Raudenbush, S.W.; Earls, F. Neighborhoods and violent crime: A multilevel study of collective efficacy. Science 1997, 277, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.A.; Kawakami, N.; Saitoh, M.; Ono, Y.; Nakane, Y.; Nakamura, Y.; Tachimori, H.; Iwata, N.; Uda, H.; Nakane, H.; et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int. J. Methods Psychiatr. Res. 2008, 17, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.A.; Barile, J.P.; Guerin, R.J.; Vanden Esschert, K.L.; Jeffers, A.; Tian, L.H.; Garcia-Williams, A.; Gurbaxani, B.; Thompson, W.W.; Prue, C.E. Factors Associated with Cloth Face Covering Use Among Adults During the COVID-19 Pandemic-United States, April and May 2020. MMWR Morb. Mortal Wkly Rep. 2020, 69, 933–937. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 February 2021).
- The Asahi Shimbun Company. Slander Continues for First Infected Person in Iwate. Available online: https://www.asahi.com/articles/ASN813J27N70ULUC00B.html (accessed on 14 December 2020).
- The Asahi Shimbun Company. Yamanashi Prefecture to Take Measures Against Slander of Infected Women. Available online: https://www.asahi.com/articles/ASN576V6GN57UZOB00Y.html (accessed on 14 December 2020).
- Christakis, N.A.; Fowler, J.H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 2007, 357, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakis, N.A.; Fowler, J.H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 2008, 358, 2249–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, W.J. McGuire’s Classic Input-Output Framework for Constructing Persuasive Messages. In Public Communication Campaigns; Rice, R.E., Atkin, C.K., Eds.; Sage: Thousand Oaks, CA, USA, 2013; pp. 133–145. [Google Scholar]
- Coleman, J.S. Foundations of Social Theory; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1990; p. xvi. 993p. [Google Scholar]
Variable | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | p-Value | |
---|---|---|---|---|---|
N (%) or Mean (SD) | N (%) or Mean (SD) | N (%) or Mean (SD) | |||
Age (in years) | Mean (SD) | 50.9 (18.0) | 52.1 (16.6) | 54.4 (18.8) | 0.649 |
Sex | Male | 62 (36.1) | 231 (50.2) | 11 (84.6) | <0.001 |
Female | 110 (64.0) | 229 (49.8) | 2 (15.4) | ||
BMI | Mean (SD) | 22.7 (3.1) | 23.5 (3.9) | 22.7 (3.7) | 0.047 |
Residential district | Center | 71 (41.3) | 166 (36.1) | 7 (53.9) | 0.478 |
East | 69 (40.1) | 188 (40.9) | 4 (30.8) | ||
South | 32 (18.6) | 106 (23.0) | 2 (15.4) | ||
Number of cohabitants | 1 | 26 (15.1) | 51 (11.1) | 2 (15.4) | 0.185 |
2 | 64 (37.2) | 140 (30.4) | 4 (30.8) | ||
≥3 | 82 (47.7) | 269 (58.5) | 7 (53.9) | ||
Education | High school or less | 73 (42.4) | 173 (37.6) | 7 (53.9) | 0.245 |
Some college | 38 (22.1) | 108 (23.5) | 1 (7.7) | ||
College or more | 55 (32.0) | 167 (36.3) | 4 (30.8) | ||
Others | 3 (1.7) | 1 (0.2) | 0 (0.0) | ||
Missing | 3 (1.7) | 11 (2.4) | 1 (7.7) | ||
Annual household income (yen) | <3 million | 42 (24.4) | 91 (19.8) | 5 (38.5) | 0.417 |
3–6 million | 48 (27.9) | 128 (27.8) | 4 (30.8) | ||
6–10 million | 50 (29.1) | 125 (27.2) | 1 (7.7) | ||
≥10 million | 18 (10.5) | 58 (12.6) | 1 (7.7) | ||
unknown/missing | 14 (8.1) | 58 (12.6) | 2 (15.4) | ||
Psychological distress | Yes (K6: 5+ ) | 60 (34.9) | 109 (23.7) | 3 (23.1) | <0.001 |
No (K6: <5) | 111 (64.5) | 341 (74.1) | 8 (61.5) | ||
Missing | 1 (0.6) | 10 (2.2) | 2 (15.4) | ||
Social integration | Mean (SD) | 4.1 (1.7) | 4.0 (1.7) | 2.6 (1.2) | 0.011 |
Social network size | Mean (SD) | 25.1 (44.5) | 22.8 (39.5) | 26.2 (32.4) | 0.802 |
Social capital score | Mean (SD) | 2.3 (0.8) | 2.4 (0.8) | 2.0 (1.2) | 0.183 |
Variable | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | p-Value | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Washing hand (times per day) | 0 | 3 (1.7) | 15 (3.3) | 1 (7.7) | 0.001 |
1–3 | 36 (20.9) | 169 (36.7) | 3 (23.1) | ||
4–6 | 54 (31.4) | 121 (26.3) | 5 (38.5) | ||
7–9 | 20 (11.6) | 63 (13.7) | 1 (7.7) | ||
≥10 | 59 (34.3) | 92 (20.0) | 3 (23.1) | ||
Missing | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Hand sanitizer (times per day) | 0 | 66 (38.4) | 344 (74.8) | 8 (61.5) | <0.001 |
1 | 14 (8.1) | 42 (9.1) | 2 (15.4) | ||
2–3 | 34 (19.8) | 43 (9.4) | 1 (7.7) | ||
≥4 | 58 (33.7) | 29 (6.3) | 2 (15.4) | ||
Missing | 0 (0.0) | 2 (0.4) | 0 (0.0) | ||
Gargling (times per day) | 0 | 25 (14.5) | 121 (26.3) | 4 (30.8) | 0.011 |
1 | 36 (20.9) | 120 (26.1) | 2 (15.4) | ||
2–3 | 77 (44.8) | 149 (32.4) | 5 (38.5) | ||
≥4 | 34 (19.8) | 70 (15.2) | 2 (15.4) | ||
Missing | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Variable | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | p-Value | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Frequency of Drinking alcohol | Never | 71 (41.3) | 148 (32.2) | 6 (46.2) | 0.036 |
little | 25 (14.5) | 57 (12.4) | 1 (7.7) | ||
≥1 per month | 22 (12.8) | 38 (8.3) | 0 (0.0) | ||
≥1 per week | 33 (19.2) | 105 (22.8) | 2 (15.4) | ||
≥1 per day | 19 (11.1) | 107 (23.3) | 4 (30.8) | ||
Missing | 2 (1.2) | 5 (1.1) | 0 (0.0) | ||
Smoking tobacco | Yes | 17 (9.9) | 59 (12.8) | 4 (30.8) | 0.174 |
No or quitted | 153 (89.0) | 390 (84.8) | 9 (69.2) | ||
Missing | 2 (1.2) | 11 (2.4) | 0 (0.0) | ||
Physical activity per week (days) | 0 | 75 (43.6) | 204 (44.4) | 6 (46.2) | 0.132 |
1–4 | 72 (41.9) | 185 (40.2) | 4 (30.8) | ||
5–7 | 25 (14.5) | 67 (14.6) | 2 (15.4) | ||
Missing | 0 (0.0) | 4 (0.9) | 1 (7.7) | ||
Sleep duration on weekdays (hours) | <6 | 57 (33.1) | 113 (24.6) | 1 (7.7) | 0.001 |
6–8 | 111 (64.5) | 320 (69.6) | 9 (69.2) | ||
8–10 | 3 (1.7) | 24 (5.2) | 2 (15.4) | ||
≥10 | 1 (0.6) | 0 (0.0) | 0 (0.0) | ||
Missing | 0 (0.0) | 3 (0.7) | 1 (7.7) | ||
Sleep duration on weekend (hours) | <6 | 30 (17.4) | 58 (12.6) | 0 (0.0) | 0.013 |
6–8 | 115 (66.9) | 337 (73.3) | 8 (61.5) | ||
8–10 | 23 (13.4) | 58 (12.6) | 4 (30.8) | ||
≥10 | 3 (1.7) | 5 (1.1) | 0 (0.0) | ||
Missing | 1 (0.6) | 2 (0.4) | 1 (7.7) |
Variable | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | p-Value | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Allergic diseases | Yes | 71 (41.3) | 168 (36.5) | 3 (23.1) | 0.303 |
No | 101 (58.7) | 292 (63.5) | 10 (76.9) | ||
Asthma or other respiratory diseases | Yes | 23 (13.4) | 38 (8.3) | 3 (23.1) | 0.044 |
No | 149 (86.6) | 422 (91.7) | 10 (76.9) | ||
Cardiac diseases | Yes | 7 (4.1) | 18 (3.9) | 1 (7.7) | 0.791 |
No | 165 (95.9) | 442 (96.1) | 12 (92.3) | ||
Kidney diseases | Yes | 4 (2.3) | 7 (1.5) | 1 (7.7) | 0.233 |
No | 168 (97.7) | 453 (98.5) | 12 (92.3) | ||
Immune diseases | Yes | 5 (2.9) | 7 (1.5) | 0 (0.0) | 0.457 |
No | 167 (97.1) | 453 (98.5) | 13 (100.0) | ||
Diabetes mellitus | Yes | 14 (8.1) | 40 (8.7) | 2 (15.4) | 0.670 |
No | 158 (91.9) | 420 (91.3) | 11 (84.6) | ||
Malignant diseases | Yes | 8 (4.7) | 17 (3.7) | 2 (15.4) | 0.109 |
No | 164 (95.4) | 443 (96.3) | 11 (84.6) | ||
Arthritis | Yes | 11 (6.4) | 14 (3.0) | 0 (0.0) | 0.116 |
No | 161 (93.6) | 446 (97.0) | 13 (100.0) | ||
Gastrointestinal diseases | Yes | 14 (8.1) | 38 (8.3) | 3 (23.1) | 0.165 |
No | 158 (91.9) | 422 (91.7) | 10 (76.9) | ||
Mental diseases | Yes | 6 (3.5) | 19 (4.1) | 0 (0.0) | 0.714 |
No | 166 (96.5) | 441 (95.9) | 13 (100.0) | ||
Alcohol and drug abuse | Yes | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0.252 |
No | 171 (99.4) | 460 (100.0) | 13 (100.0) | ||
Tuberculosis | Yes | 2 (1.2) | 6 (1.3) | 1 (7.7) | 0.146 |
No | 170 (98.8) | 454 (98.7) | 12 (92.3) |
Variable | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | p-Value | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Employment | Employed | 110 (64.0) | 266 (57.8) | 5 (38.5) | 0.039 |
Self-employed | 13 (7.6) | 36 (7.8) | 3 (23.1) | ||
Not working | 21 (12.2) | 72 (15.7) | 5 (38.5) | ||
Housemakers | 28 (16.3) | 79 (17.2) | 0 (0.0) | ||
Missing | 0 (0.0) | 7 (1.5) | 0 (0.0) |
Variable | Consistent Mask Users (n = 123) | New Users (n = 302) | Current Non-Users (n = 8) | p-Value | |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | |||
Workplace Size (number of people in the workplace) | 1–4 | 18 (14.6) | 39 (12.9) | 3 (37.5) | 0.034 |
5–99 | 62 (50.4) | 122 (40.4) | 1 (12.5) | ||
100–499 | 14 (11.4) | 51 (16.9) | 2 (25.0) | ||
≥500 | 26 (21.1) | 60 (19.9) | 1 (12.5) | ||
Government offices (including local government) | 1 (0.8) | 20 (6.6) | 0 (0.0) | ||
Missing | 2 (1.6) | 10 (3.3) | 1 (12.5) | ||
Job types | Management | 11 (8.9) | 37 (12.3) | 0 (0.0) | 0.220 |
Professional work | 29 (23.6) | 60 (19.9) | 0 (0.0) | ||
Office work | 19 (15.5) | 43 (14.2) | 0 (0.0) | ||
Service and sales | 18 (14.6) | 38 (12.6) | 1 (12.5) | ||
Others | 27 (22.0) | 80 (26.5) | 3 (37.5) | ||
Missing | 19 (15.5) | 44 (14.6) | 4 (50.0) |
Variable | Consistent Mask Users (n = 166) | New Users (n = 446) | Current Non-Users (n = 11) | p-Value |
---|---|---|---|---|
N (%) | N (%) | N (%) | ||
AST | 21.7 (9.5) | 22.8 (11.8) | 50.3 (62.3) | <0.001 |
ALT | 19.4 (11.8) | 22.3 (20.2) | 36.1 (27.0) | 0.008 |
LDL-C | 116.9 (30.9) | 113.9 (27.4) | 108.5 (27.7) | 0.399 |
HDL-C | 62.1 (14.4) | 60.9 (16.1) | 59.7 (12.1) | 0.661 |
NLR | 0.54 (0.41) | 0.52 (0.41) | 0.34 (0.35) | 0.414 |
CRP | 1.07 (3.33) | 0.87 (1.96) | 1.14 (1.29) | 0.627 |
Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) | |
---|---|---|---|
RRR (95% CI) | Reference | RRR (95% CI) | |
Crude model a | |||
Low social integration | 0.97 (0.88, 1.08) | 1.00 (Reference) | 1.73 (1.16, 2.57) |
Adjusted model a,b | |||
Low social integration | 1.00 (0.90, 1.12) | 1.00 (Reference) | 1.76 (1.10, 2.82) |
Heading | Consistent Mask Users (n = 172) | New Users (n = 460) | Current Non-Users (n = 13) |
---|---|---|---|
RRR (95% CI) | Reference | RRR (95% CI) | |
Crude model | |||
Low social capital score a | 1.08 (0.86, 1.36) | 1.00 (Reference) | 1.97 (0.85, 4.58) |
Adjusted model b | |||
Low social capital score a | 1.02 (0.79, 1.32) | 1.00 (Reference) | 2.60 (0.98, 6.90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawa, N.; Yamaoka, Y.; Koyama, Y.; Nishimura, H.; Sonoda, S.; Kuramochi, J.; Miyazaki, Y.; Fujiwara, T. Association between Social Integration and Face Mask Use Behavior during the SARS-CoV-2 Pandemic in Japan: Results from U-CORONA Study. Int. J. Environ. Res. Public Health 2021, 18, 4717. https://doi.org/10.3390/ijerph18094717
Nawa N, Yamaoka Y, Koyama Y, Nishimura H, Sonoda S, Kuramochi J, Miyazaki Y, Fujiwara T. Association between Social Integration and Face Mask Use Behavior during the SARS-CoV-2 Pandemic in Japan: Results from U-CORONA Study. International Journal of Environmental Research and Public Health. 2021; 18(9):4717. https://doi.org/10.3390/ijerph18094717
Chicago/Turabian StyleNawa, Nobutoshi, Yui Yamaoka, Yuna Koyama, Hisaaki Nishimura, Shiro Sonoda, Jin Kuramochi, Yasunari Miyazaki, and Takeo Fujiwara. 2021. "Association between Social Integration and Face Mask Use Behavior during the SARS-CoV-2 Pandemic in Japan: Results from U-CORONA Study" International Journal of Environmental Research and Public Health 18, no. 9: 4717. https://doi.org/10.3390/ijerph18094717
APA StyleNawa, N., Yamaoka, Y., Koyama, Y., Nishimura, H., Sonoda, S., Kuramochi, J., Miyazaki, Y., & Fujiwara, T. (2021). Association between Social Integration and Face Mask Use Behavior during the SARS-CoV-2 Pandemic in Japan: Results from U-CORONA Study. International Journal of Environmental Research and Public Health, 18(9), 4717. https://doi.org/10.3390/ijerph18094717