Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Food Logs
2.3. Procedures
3. Statistical Analysis
4. Results
4.1. Food Logs ANOVA
4.2. Bioelectrical Impedance Measures ANOVA
4.3. Ultrasonography Measures ANOVA
5. Discussion
Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeWeese, B.; Hornsby, G.; Stone, M.; Stone, M. The Training Process: Planning for Strength-Power Training in Track and Field. Part 1: Theoretical Aspects. J. Sport Health Sci. 2015, 4, 308–317. [Google Scholar] [CrossRef] [Green Version]
- DeWeese, B.; Hornsby, G.; Stone, M.; Stone, M. The Training Process: Planning for Strength-Power Training in Track and Field. Part 2: Practical and Applied Aspects. J. Sport Health Sci. 2015, 4, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Morehouse, L.; Miller, A. Physiology of Exercise; C.V. Mosby: St. Louis, MO, USA, 1976. [Google Scholar]
- Sale, D.; MacDougall, D. Specificity in strength training: A review for the coach and athlete. Can. J. Appl. Sport Sci. 1981, 6, 87–92. [Google Scholar] [PubMed]
- Stone, M.; Fleck, S.; Kraemer, W.; Triplett, T. Health and performance related adaptations to resistive training. Sports Med. 1991, 11, 210–231. [Google Scholar] [CrossRef]
- Taber, C.; Vigotsky, A.; Nuckols, G.; Haun, C. Exercise‑Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports Med. 2019, 49, 993–997. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, W.; Ratamess, N.; Fry, A.; Triplett-McBride, T.; Koziris, L.; Bauer, J.; Lynch, J.; Fleck, S. Influence of Resistance Training Volume and Periodization on Physiological and Performance Adaptations in Collegiate Women Tennis Players. Am. J. Sports Med. 2000, 28, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.; Ratamess, N.; French, D. Resistance training for health and performance. Curr. Sports Med. Rep. 2002, 1, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, R.; Fleck, S.; Leite, T.; Leite, R.; Pinto, R.; Fernandes, L.; Simão, R. Dose-response of 1, 3, and 5 sets of resistance ex-ercise on strength, local muscular endurance, and hypertrophy. J. Strength Cond. Res. 2015, 29, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Tesch, P. Skeletal muscle hypertrophy adaptions consequent to long-term heavy resistance exercise. Med. Sci. Sports Exerc. 1988, 20, 132–134. [Google Scholar] [CrossRef]
- Haun, C.T.; Vann, C.G.; Osburn, S.C.; Mumford, P.W.; Roberson, P.A.; Romero, M.A.; Fox, C.D.; Johnson, C.A.; Parry, H.A.; Kavazis, A.N.; et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS ONE 2019, 14, e0215267. [Google Scholar] [CrossRef] [Green Version]
- Rasch, P.J. The problem of muscle hypertrophy: A review. J. Am. Osteopat. Assoc. 1955, 54, 525–528. [Google Scholar]
- Roberts, M.D.; Haun, C.T.; Mobley, C.B.; Mumford, P.W.; Romero, M.A.; Roberson, P.A.; Vann, C.G.; McCarthy, J.J. Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Front. Physiol. 2018, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Libardi, C.A.; Ugrinowitsch, C. The development of skeletal muscle hypertrophy through resistance training: The role of muscle damage and muscle protein synthesis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 118, 485–500. [Google Scholar] [CrossRef]
- DeFreitas, J.; Beck, T.; Stock, M.; Dillon, M.; Kasishke, P. An examination of the time course of training-induced skeletal muscle hypertrophy. Eur. J. Appl. Physiol. 2010, 111, 2785–2790. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.D.; Haun, C.T.; Vann, C.G.; Osburn, S.C.; Young, K.C. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific “Unicorn” or Resistance Training Adaptation? Front. Physiol. 2020, 11, 816. [Google Scholar] [CrossRef]
- Andersen, J.; Aagaard, P. Effects of strength training on muscle fiber types and size: Consequences for athletes training for high-intensity sport. Scand. J. Med. Sci. Sports 2010, 20, 32–38. [Google Scholar] [CrossRef]
- Maden-Wilkinson, T.M.; Balshaw, T.G.; Massey, G.J.; Folland, J.P. What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. J. Appl. Physiol. 2020, 128, 1000–1011. [Google Scholar] [CrossRef]
- Hakkinen, K.; Komi, P. Electromyographic changes during strength training and detraining. Med. Sci. Sports Exerc. 1983, 15, 455–460. [Google Scholar] [CrossRef]
- Moritani, T.; deVries, H. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar]
- Meijer, J.P.; Jaspers, R.T.; Rittweger, J.; Seynnes, O.R.; Kamandulis, S.; Brazaitis, M.; Skurvydas, A.; Pisot, R.; Simunic, B.; Narici, M.V.; et al. Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects. Exp. Physiol. 2015, 100, 1331–1341. [Google Scholar] [CrossRef]
- DiNaso, J.; Pritschet, B.; Emmett, J.; Owen, J.; Willardson, J.; Beck, T.; DeFreitas, J.; Fontana, F. Comparing thigh muscle cross-sectional area and squat strength among national class Olympic weightlifters, power lifters, and bodybuilders. Int. Sports Med. J. 2012, 13, 48–57. [Google Scholar]
- Ikegawa, S.; Funato, K.; Tsunoda, N.; Kanehisa, H.; Fukunaga, T.; Kawakami, Y. Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes. J. Strength Cond. Res. 2008, 22, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Barnes, A. The Effectiveness of Two Methods of Prescribing Load on Maximal Strength Development: A Systematic Review. Sports Med. 2019, 50, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Carroll, K.; Bernards, J.; Bazyler, C.; Taber, C.; Stuart, C.; DeWeese, B.; Sato, K.; Stone, M. Divergent Performance Out-comes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2018, 14, 1–28. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; O’bryant, H.; Garhammer, J.; McMillan, J.; Rozenek, R. A Theoretical Model of Strength Training. Natl. Strength Coach. Assoc. J. 1982, 4, 36–39. [Google Scholar] [CrossRef]
- Stone, M.; Stone, M.; Sands, W. Principles and Practice of Resistance Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Painter, K.B.; Haff, G.G.; Ramsey, M.W.; McBride, J.; Triplett, T.; Sands, W.A.; Lamont, H.S.; Stone, M.E.; Stone, M.H. Strength Gains: Block Versus Daily Undulating Periodization Weight Training Among Track and Field Athletes. Int. J. Sports Physiol. Perform. 2012, 7, 161–169. [Google Scholar] [CrossRef]
- Painter, K.; Haff, G.; Triplett, T.; Stuart, C.; Hornsby, G.; Ramsey, M.; Bazyler, C.; Stone, M. Resting Hormone Alterations and Injuries: Block vs. DUP Weight-Training among D-1 Track and Field Athletes. Sports 2018, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Judelson, D.A.; Maresh, C.M.; Farrell, M.J.; Yamamoto, L.M.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of Hydration State on Strength, Power, and Resistance Exercise Performance. Med. Sci. Sports Exerc. 2007, 39, 1817–1824. [Google Scholar] [CrossRef]
- Moon, J.; Tobkin, S.; Roberts, M.; Dalbo, V.; Kerksick, C.; Bemben, M.; Cramer, J.; Stout, J. Total body water estimations in healthy men and women using bioimpedance spectroscopy: A deuterium oxide comparison. Nutr. Metab. 2008, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wagle, J.P.; Carroll, K.M.; Cunanan, A.J.; Taber, C.B.; Wetmore, A.; Bingham, G.E.; Deweese, B.H.; Sato, K.; Stuart, C.A.; Stone, M.H. Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities. Sports 2017, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, W.; Fry, A. Strength Testing: Development and evaluation of methodology. In Physiological Assessment of Human Fitness; Human Kinetics: Champaign, IL, USA, 1995; pp. 115–138. [Google Scholar]
- Cotter, J.A.; Chaudhari, A.M.; Jamison, S.T.; Devor, S.T. Knee Joint Kinetics in Relation to Commonly Prescribed Squat Loads and Depths. J. Strength Cond. Res. 2013, 27, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- Marieb, E.; Mallatt, J.; Wilhelm, P. Human Anatomy, 5th ed.; Pearson Education Inc.: San Francisco, CA, USA, 2008. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Med. and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Damas, F.; Phillips, S.M.; Lixandrão, M.E.; Vechin, F.C.; Libardi, C.A.; Roschel, H.; Tricoli, V.; Ugrinowitsch, C. Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 116, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Phillips, S.M.; Libardi, C.A.; Vechin, F.C.; Lixandrão, M.E.; Jannig, P.R.; Costa, L.A.R.; Bacurau, A.V.; Snijders, T.; Parise, G.; et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J. Physiol. 2016, 594, 5209–5222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef]
- Sleboda, D.A.; Roberts, T.J. Internal fluid pressure influences muscle contractile force. Proc. Natl. Acad. Sci. USA 2019, 117, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size—or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.; Gonzalez, A.; Townsend, J.; Wells, A.; Beyer, K.; Miramonti, A.; Ratamess, N.; Stout, J.; Hoffman, J. Influence of baseline muscle strength and size measures on training adaptions in resistance-trained men. Int. J. Exerc. Sci. 2018, 11, 198–213. [Google Scholar]
- Wetmore, A.B.; Moquin, P.A.; Carroll, K.M.; Fry, A.C.; Hornsby, W.G.; Stone, M.H. The Effect of Training Status on Adaptations to 11 Weeks of Block Periodization Training. Sports 2020, 8, 145. [Google Scholar] [CrossRef]
Training Block | Week | Sets × Reps | Day 1 and 2 | Day 3 |
---|---|---|---|---|
Strength-Endurance | 1 | 3 × 10 | 80% | 70% |
2 | 3 × 10 | 85% | 75% | |
3 | 3 × 10 | 90% | 80% | |
Maximum Strength | 4 | 3 × 5 (1 × 5) * | 85% | 70% |
5 | 3 × 5 (1 × 5) * | 87.5% | 72.5% | |
6 | 3 × 5 (1 × 5) * | 92.5% | 75% | |
7 | 3 × 5 (1 × 5) * | 80% | 65% | |
Overreach | 8 | 5 × 5 | 85% | 75% |
Speed-Strength | 9 | 3 × 3 (1 × 5) * | 87.5% | 67.5% |
10 | 3 × 2 (1 × 5) * | 85% | 65% | |
11 | 2 × 2 (1 × 5) * | 65% & 60% | --------- |
Training Block | Day 1 | Day 2 | Day 3 |
---|---|---|---|
Strength-Endurance | Back Squat, Overhead Press, Bench Press, DB Triceps Ext. | CG MTP, CG SLDL, BB Bent Over Row, DB Bent Lateral Raise | Back Squat, Overhead Press, Bench Press, DB Triceps Ext. |
Max Strength | Back Squat, Push Press, Incline Bench Press, Wtd. Dips | CG MTP, Clean Pull, SG SLDL, Pull Ups | Back Squat, Push Press, Incline Bench Press, Wtd. Dips |
Overreach | Back Squat, Push Press, DB Step Ups, Bench Press | CG CM Shrug, Clean Pull, CG SLDL, SA DB Bent Over Row | Back Squat, Push Press, DB Step Ups, Bench Press |
Speed-Strength | Back Squat + Rocket Jumps, Push Press, Bench press + Med Ball Chest Pass | CG MTP, CG CM Shrug, Vertical Med Ball Toss | Back Squat + Rocket Jumps, Push Press, Bench press + Med Ball Chest Pass |
5 × 30% of 1-RM * | 3 × 50% of 1-RM * | 2 × 70% of 1-RM * | 1 × 80% of 1-RM * | 1 × 90% of 1-RM * |
---|---|---|---|---|
1 min | 1 min | 2 min | 3 min | 3 min |
Dependent Variable | %BF | LBM | TBW | LBMadjusted | CSA |
---|---|---|---|---|---|
Intraclass Correlation (ICC) | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 |
Lower Confidence Limit | 0.98 | 0.98 | 0.99 | 0.99 | 0.96 |
Upper Confidence Limit | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 |
Coefficient of Variation (CV) (%) | 8.70% | 2.67% | 2.67% | 2.18% | 6.33% |
Group | Variable | Baseline | SE | MS | FOR | Taper |
---|---|---|---|---|---|---|
High | BM (kg) | 87.7 ± 10.0 | 89.6 ± 9.4 | 90.3 ± 9.7 | 90.5 ± 9.4 | 88.6 ± 9.2 |
%BF | 19.4 ± 8.3 | 19.0 ± 7.9 | 17.4 ± 8.2 | 18.5 ± 7.8 | 17.4 ± 6.8 | |
TBW (kg) | 51.7 ± 4.7 | 52.9 ± 5.0 | 54.3 ± 4.6 | 53.7 ± 5.0 | 53.3 ± 3.4 | |
LBM (kg) | 70.6 ± 6.5 | 72.3 ± 6.9 | 74.2 ± 6.3 | 73.4 ± 6.8 | 72.8 ± 4.6 | |
LBMadjusted (kg) | 20.7 ± 1.8 | 21.1 ± 1.8 | 21.5 ± 1.7 | 21.4 ± 1.8 | 21.1 ± 1.5 | |
Moderate | BM (kg) | 100.2 ± 17.9 | 102.5 ± 20.5 | 105.4 ± 22.0 | 105.4 ± 21.5 | 104.1 ± 22.0 |
%BF | 25.5 ± 6.4 | 24.6 ± 7.6 | 24.9 ± 7.9 | 25.7 ± 7.5 | 26.1 ± 7.3 | |
TBW (kg) | 54.4 ± 8.1 | 56.2 ± 10.8 | 57.4 ± 10.3 | 56.8 ± 9.9 | 55.7 ± 9.4 | |
LBM (kg) | 74.3 ± 11.1 | 76.8 ± 14.8 | 78.4 ± 14.1 | 77.5 ± 13.5 | 76.1 ± 12.9 | |
LBMadjusted (kg) | 22.5 ± 3.5 | 23.2 ± 4.3 | 23.7 ± 4.4 | 23.6 ± 4.2 | 23.2 ± 4.2 | |
Low | BM (kg) | 83.5 ± 18.5 | 85.3 ± 18.7 | 86.3 ± 17.9 | 86.5 ± 17.9 | 86.1 ± 18.4 |
%BF | 22.7 ± 9.7 | 21.4 ± 10.1 | 21.7 ± 10.1 | 21.2 ± 11.0 | 21.7 ± 9.4 | |
TBW (kg) | 46.1 ± 5.9 | 48.0 ± 5.5 | 48.5 ± 5.8 | 48.7 ± 4.9 | 48.5 ± 6.1 | |
LBM (kg) | 62.9 ± 8.1 | 65.5 ± 7.5 | 66.2 ± 8.0 | 66.5 ± 6.6 | 66.3 ± 8.3 | |
LBMadjusted (kg) | 18.9 ± 3.1 | 19.5 ± 3.1 | 19.8 ± 3.0 | 19.8 ± 2.8 | 19.8 ± 3.2 | |
All Subjects | BM (kg) | 89.1 ± 17.0 | 91.0 ± 17.7 # | 92.5 ± 18.2 *# | 92.6 ± 18.0 *# | 91.5 ± 18.1 # |
%BF | 22.6 ± 8.3 | 21.6 ± 8.6 | 21.4 ± 8.9 | 21.7 ± 9.2 | 21.7 ± 8.4 | |
TBW (kg) | 49.8 ± 6.9 | 51.5 ± 7.5 # | 52.4 ± 7.6 # | 52.2 ± 7.0 # | 51.7 ± 6.9 # | |
LBM (kg) | 68.0 ± 9.5 | 70.3 ± 10.3 # | 71.6 ± 10.4 # | 71.3 ± 9.6 # | 70.6 ± 9.4 # | |
LBMadjusted (kg) | 20.4 ± 3.1 | 20.9 ± 3.3 # | 21.3 ± 3.4 *# | 21.2 ± 3.2 *# | 21.0 ± 3.3 # |
Group | Variable | Baseline | SE | MS | FOR | Taper |
---|---|---|---|---|---|---|
High | CSA (cm2) | 33.0 ± 6.3 | 36.5 ± 6.0 | 36.3 ± 6.8 | 36.1 ± 4.6 | 36.9 ± 3.4 |
Moderate | CSA (cm2) | 38.9 ± 12.0 | 39.8 ± 10.0 | 42.6 ± 9.8 | 42.7 ± 9.9 | 42.3 ± 9.9 |
Low | CSA (cm2) | 29.1 ± 6.5 | 30.8 ± 7.0 | 32.1 ± 6.8 | 32.0 ± 5.9 | 33.1 ± 5.3 |
All Subjects | CSA (cm2) | 32.7 ± 8.6 | 34.7 ± 8.1 # | 36.0 ± 8.4 # | 36.0 ± 7.8 # | 36.3 ± 7.2 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moquin, P.A.; Wetmore, A.B.; Carroll, K.M.; Fry, A.C.; Hornsby, W.G.; Stone, M.H. Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training. Int. J. Environ. Res. Public Health 2021, 18, 4735. https://doi.org/10.3390/ijerph18094735
Moquin PA, Wetmore AB, Carroll KM, Fry AC, Hornsby WG, Stone MH. Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training. International Journal of Environmental Research and Public Health. 2021; 18(9):4735. https://doi.org/10.3390/ijerph18094735
Chicago/Turabian StyleMoquin, Paul A., Alexander B. Wetmore, Kevin M. Carroll, Andrew C. Fry, W. Guy Hornsby, and Michael H. Stone. 2021. "Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training" International Journal of Environmental Research and Public Health 18, no. 9: 4735. https://doi.org/10.3390/ijerph18094735
APA StyleMoquin, P. A., Wetmore, A. B., Carroll, K. M., Fry, A. C., Hornsby, W. G., & Stone, M. H. (2021). Lean Body Mass and Muscle Cross-Sectional Area Adaptations Among College Age Males with Different Strength Levels across 11 Weeks of Block Periodized Programmed Resistance Training. International Journal of Environmental Research and Public Health, 18(9), 4735. https://doi.org/10.3390/ijerph18094735