Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dependent Variables: UHRI and NDVI
2.3. Independent Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Kohler, T.A.; Lenton, T.M.; Svenning, J.-C.; Scheffer, M. Future of the human climate niche. Proc. Natl. Acad. Sci. USA 2020, 117, 11350–11355. [Google Scholar] [CrossRef] [PubMed]
- Coventry, P.; Okerere, C. Climate change and environmental justice. In The Routledge Handbook of Environmental Justice; Holifield, R., Chakraborty, C., Walker, G., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 362–373. [Google Scholar]
- Mitchell, B.C.; Chakraborty, J. Thermal inequity. In Routledge Handbook of Climate Justice; Routledge: London, UK, 2018; pp. 330–346. [Google Scholar]
- Jafry, T.; Mikulewicz, M.; Helwig, K. Introduction: Justice in the era of climate change. In Routledge Handbook of Climate Justice; Jafry, T., Ed.; Routledge: London, UK, 2018; pp. 1–9. [Google Scholar]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Clim. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Oliver, J.E.; Oke, T.R. Boundary Layer Climates; Methuen and Co., Ltd.: London, UK; Halsted Press: New York, NY, USA, 1978. [Google Scholar]
- Hoffman, J.S.; Shandas, V.; Pendleton, N. The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate 2020, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Lanza, K.; Stone, B., Jr.; Haardörfer, R. How race, ethnicity, and income moderate the relationship between urban vegetation and physical activity in the United States. Prev. Med. 2019, 121, 55–61. [Google Scholar] [CrossRef]
- Sanjay, J.; Revadekar, J.V.; RamaRao, M.V.S.; Borgaonkar, H.; Sengupta, S.; Kothawale, D.R.; Patel, J.; Mahesh, R.; Ingle, S.; AchutaRao, K.; et al. Temperature Changes in India. In Assessment of Climate Change over the Indian Region; Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., Chakraborty, S., Eds.; Springer: Singapore, 2020; pp. 21–45. [Google Scholar]
- Murari, K.K.; Ghosh, S.; Patwardhan, A.; Daly, E.; Salvi, K. Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg. Environ. Chang. 2015, 15, 569–579. [Google Scholar] [CrossRef]
- Ratnam, J.V.; Behera, S.K.; Ratna, S.B.; Rajeevan, M.; Yamagata, T. Anatomy of Indian heatwaves. Sci. Rep. 2016, 6, 24395. Available online: https://www.nature.com/articles/srep24395 (accessed on 29 April 2021). [CrossRef] [Green Version]
- Im, E.-S.; Pal, J.S.; Eltahir, E.A.B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 2017, 3, e1603322. [Google Scholar] [CrossRef] [Green Version]
- Van Oldenborgh, G.J.; Philip, S.; Kew, S.; Van Weele, M.; Uhe, P.; Otto, F.; Singh, R.; Pai, I.; Cullen, H.; AchutaRao, K. Extreme heat in India and anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 2018, 18, 365–381. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B. Is Extreme Heat Making India Unlivable? MINT. 26 September 2020. Available online: https://www.livemint.com/mint-lounge/features/is-extreme-heat-making-india-unlivable-11601034638011.html (accessed on 29 April 2021).
- Revi, A. Climate change risk: An adaptation and mitigation agenda for Indian cities. Environ. Urban 2008, 20, 207–229. [Google Scholar] [CrossRef] [Green Version]
- Khosla, R.; Bhardwaj, A. Urbanization in the time of climate change: Examining the response of Indian cities. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e560. [Google Scholar] [CrossRef] [Green Version]
- Hajat, S.; Armstrong, B.G.; Gouveia, N.; Wilkinson, P. Mortality displacement of heat-related deaths: A comparison of Delhi, Sao Paulo, and London. Epidemiology 2005, 16, 613–620. [Google Scholar] [CrossRef]
- Kakkad, K.; Barzaga, M.L.; Wallenstein, S.; Azhar, G.S.; Sheffield, P.E. Neonates in Ahmedabad, India, during the 2010 Heat Wave: A Climate Change Adaptation Study. J. Environ. Public Health 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.K.; Kjellstrom, T. Workplace heat stress in the context of rising temperature. Curr. Sci. 2011, 101, 496–503. [Google Scholar]
- Acharya, P.; Boggess, B.; Zhang, K. Assessing heat stress and health among construction workers in a changing cli-mate: A review. Int. J. Environ. Res. Public Health 2018, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- UN-Habitat. The challenge of slums: Global report on human settlements 2003. Manag. Environ. Qual. 2004, 15, 337–338. [Google Scholar]
- Scovronick, N.; Lloyd, S.J.; Kovats, R.S. Climate and health in informal urban settlements. Environ. Urban. 2015, 27, 657–678. [Google Scholar] [CrossRef]
- Veriah, R.R. Classification of Informal Settlements Based on Their Susceptibility to Climate Change: Case study of Ahmedabad, India. M.A. Project, School of City and Regional Planning, Georgia Institute of Technology. 2018. Available online: http://hdl.handle.net/1853/60000 (accessed on 29 April 2021).
- Wang, J.; Kuffer, M.; Sliuzas, R.; Kohli, D. The exposure of slums to high temperature: Morphology-based local scale thermal patterns. Sci. Total. Environ. 2019, 650, 1805–1817. [Google Scholar] [CrossRef]
- Yenneti, K.; Tripathi, S.; Wei, Y.D.; Chen, W.; Joshi, G. The truly disadvantaged? Assessing social vulnerability to climate change in urban India. Habitat Int. 2016, 56, 124–135. [Google Scholar] [CrossRef]
- Tran, K.V.; Azhar, G.S.; Nair, R.; Knowlton, K.; Jaiswal, A.; Sheffield, P.; Mavalankar, D.; Hess, J. A cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in Ahmedabad, India. Int. J. Environ. Res. Public Health 2013, 10, 2515–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathuria, V.; Khan, N. Vulnerability to Air pollution: Is there any inequity in exposure? Econ. Political Wkly. 2007, 42, 3158–3165. [Google Scholar]
- Basu, P.; Chakraborty, J. Environmental justice implications of industrial hazardous waste generation in India: A national scale analysis. Environ. Res. Lett. 2016, 11, 125001. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, J.; Basu, P. Linking Industrial hazards and social inequalities: Environmental injustice in Gujarat, India. Int. J. Environ. Res. Public Health 2018, 16, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, J.; Basu, P. Air quality and environmental injustice in India: Connecting particulate pollution to social disadvantages. Int. J. Environ. Res. Public Health 2021, 18, 304. [Google Scholar] [CrossRef]
- Pandey, P.; Kumar, D.; Prakash, A.; Kumar, K.; Jain, V.K. A study of the summertime urban heat island over Delhi. Int. J. Sust. Sci. Stud. 2009. Available online: http://www.polocentre.org/resources/publications/ijsss/si1/05 (accessed on 29 April 2021).
- Mallick, J.; Rahman, A. Impact of population density on the surface temperature and micro-climate of Delhi. Curr. Sci. 2012, 102, 1708–1713. [Google Scholar]
- Mohan, M.; Kikegawa, Y.; Gurjar, B.R.; Bhati, S.; Kolli, N.R. Assessment of urban heat island effect for different land use–land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theor. Appl. Clim. 2012, 112, 647–658. [Google Scholar] [CrossRef]
- Singh, R.B.; Grover, A.; Zhan, J. Inter-Seasonal variations of surface temperature in the urbanized environment of Delhi Using Landsat Thermal Data. Energies 2014, 7, 1811–1828. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.D.; Kant, Y.; Mitra, D. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J. Environ. Manag. 2015, 148, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Hooyberghs, H.; Lauwaet, D.; De Ridder, K. Urban Heat Island and Future Climate Change—Implications for Delhi’s Heat. J. Hered. 2019, 96, 235–251. [Google Scholar] [CrossRef]
- Jacobs, C.; Singh, T.; Gorti, G.; Iftikhar, U.; Saeed, S.; Syed, A.; Abbas, F.; Ahmad, B.; Bhadwal, S.; Siderius, C. Patterns of outdoor exposure to heat in three South Asian cities. Sci. Total. Environ. 2019, 674, 264–278. [Google Scholar] [CrossRef]
- Singh, R.B.; Grover, A. Urban industrial development, environmental pollution, and human health: A case study of East Delhi. In Climate Change and Human Health Scenario in South and Southeast Asia; Akhtar, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 113–130. [Google Scholar]
- Grover, A.; Singh, R.B. Analysis of urban heat island (UHI) in relation to Normalized Difference Vegetation Index (NDVI): A comparative study of Delhi and Mumbai. Environmets 2015, 2, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Sathyakumar, V.; Ramsankaran, R.A.A.J.; Bardhan, R. Linking remotely sensed Urban Green Space (UGS) distribution patterns and Socio-Economic Status (SES)-A multi-scale probabilistic analysis based in Mumbai, India. Sci. Remote Sens. 2019, 56, 645–669. [Google Scholar] [CrossRef]
- Knowlton, K.; Kulkarni, S.P.; Azhar, G.S.; Mavalankar, D.; Jaiswal, A.; Connolly, M.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Deol, B.; et al. Development and Implementation of South Asia’s First Heat-Health Action Plan in Ahmedabad (Gujarat, India). Int. J. Environ. Res. Public Health 2014, 11, 3473–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, S. Policy storylines in the Indian climate change regime: Opening new political space? Environ. Plan. C 2012, 30, 109–112. [Google Scholar] [CrossRef]
- Hughes, S. Justice in urban climate change adaptation: Criteria and application to Delhi. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S. Environmental justice discourses in Indian climate politics. Geojournal 2014, 79, 677–691. [Google Scholar] [CrossRef]
- Sharma, S. Delhi Could Be the World’s Most Populous City by 2028. But Is It Really Prepared? 2019. Available online: https://economictimes.indiatimes.com/news/politics-and-nation/delhi-could-be-the-worlds-most-populous-city-by-2028-but-is-it-really-prepared/articleshow/68027790.cms?from=mdr (accessed on 29 April 2021).
- UN (United Nations, Department of Economic and Social Affairs). World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 29 April 2021).
- Government of NCT of Delhi. Economic Survey of Delhi, 2014–2015. Chapter 2. Planning Department. 2019. Available online: http://delhiplanning.nic.in/sites/default/files/ESD%2B2014-15%2B-%2BCh-2.pdf (accessed on 29 April 2021).
- Census of India. SRS Statistical Report 2011. Chapter 2. 2011. Available online: https://censusindia.gov.in/vital_statistics/SRS_Report/9Chap%202%20-%202011.pdf (accessed on 29 April 2021).
- Sheikh, S.; Banda, S. Categorisation of Settlement in Delhi. Centre for Policy Research. Available online: http://www.cprindia.org/sites/default/files/policy-briefs/Categorisation-of-Settlement-in-Delhi.pdf (accessed on 29 April 2021).
- Chandran, R. Delhi’s Illegal Colonies Await Makeover after Coronavirus. Reuters. 24 June 2020. Available online: https://www.reuters.com/article/us-india-landrights-city-feature-trfn/delhis-illegal-colonies-await-makeover-after-coronavirus-idUSKBN23W00P (accessed on 29 April 2021).
- Mitchell, B.C.; Chakraborty, J. Landscapes of thermal inequity: Disproportionate exposure to urban heat in the three largest US cities. Environ. Res. Lett. 2015, 10, 115005. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Michishita, R.; Sasagawa, T. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens. Environ. 2006, 104, 211–225. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote. Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote. Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Fung, T.; Siu, W. Environmental quality and its changes, an analysis using NDVI. Int. J. Remote. Sens. 2000, 21, 1011–1024. [Google Scholar] [CrossRef]
- Fung, T.; Siu, W.-L. A Study of green space and its changes in Hong Kong Using NDVI. Geogr. Environ. Model. 2001, 5, 111–122. [Google Scholar] [CrossRef]
- Shahabi, H.; Ahmad, B.B.; Mokhtari, M.H.; Zadeh, M.A. Detection of urban irregular development and green space destruction using normalized difference vegetation index (NDVI), principal component analysis (PCA) and post classi-fication methods: A case study of Saqqez city. Int. J. Phys. Sci. 2012, 7, 2587–2595. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Nichol, J.; Wong, M.S.; Fung, C.; Leung, K.K.M. Assessment of urban environmental quality in a subtropical city using multispectral satellite images. Environ. Plan. B Plan. Des. 2006, 33, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Bytomski, J.R.; Squire, D.L. Heat illness in children. Curr. Sports Med. Rep. 2003, 2, 320–324. [Google Scholar] [CrossRef]
- Nelder, J.; Wedderburn, R. Generalized linear models. J. Royal Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Liang, K.; Zeger, S. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Collins, T.W.; Grineski, S.; Chakraborty, J.; Montgomery, M.; Hernandez, M. Downscaling environmental justice analysis: Determinants of household-level hazardous air pollutant exposure in Greater Houston. Ann. Assoc. Geogr. 2015, 105, 685–703. [Google Scholar] [CrossRef]
- Diggle, P.; Heagerty, P.; Liang, K.; Zeger, S. Longitudinal Data Analysis, 2nd ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Roux, A.V.D. A glossary for multilevel analysis. J. Epidemiol. Community Health 2002, 56, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Garson, G.D. Generalized Linear Models and Generalized Estimating Equations; Statistical Associates Publishers: Asheboro, NC, USA, 2012. [Google Scholar]
- Kumar, R.; Pandey, V.K.; Sharma, M.C. Assessing the human role in changing floodplain and channel belt of the Yamuna River in National Capital Territory of Delhi, India. J. Indian Soc. Remote. Sens. 2019, 47, 1347–1355. [Google Scholar] [CrossRef]
- Kalpavriksh. The Delhi Ridge Forest: Decline and Conservation; Kalpavriksh: Delhi, India, 1991. [Google Scholar]
- Baviskar, A. Urban Nature and its publics: Shades of green in the remaking of Delhi. In Grounding Urban Natures; The MIT Press: Cambridge, MA, USA, 2019; pp. 223–246. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Budhiraja, B.; Agrawal, G.; Pathak, P. Urban heat island effect of a polynuclear megacity Delhi—Compactness and thermal evaluation of four sub-cities. Urban Clim. 2020, 32, 100634. [Google Scholar] [CrossRef]
- Lanza, K.; Durand, C.P. Heat-moderating effects of bus stop shelters and tree shade on public transport ridership. Int. J. Environ. Res. Public Health 2021, 18, 463. [Google Scholar] [CrossRef]
Min | Max | Mean | SD | |
---|---|---|---|---|
Dependent variables: | ||||
May urban heat risk index (UHRI) | −10.910 | 7.498 | 0.001 | 2.682 |
Sept UHRI | −5.163 | 4.657 | −0.001 | 1.834 |
May normalized difference vegetation index (NDVI) | −0.059 | 0.199 | 0.043 | 0.053 |
Sept NDVI | −0.037 | 0.408 | 0.142 | 0.099 |
Independent variables: | ||||
Population density (persons per sq. km) | 179 | 184,468 | 27,840 | 23,414 |
Proportion children (age 6 years or less) | 0.058 | 0.160 | 0.116 | 0.021 |
Prop Scheduled Caste | 0.002 | 0.720 | 0.169 | 0.115 |
Prop literate (age more than 6 years) | 0.720 | 0.971 | 0.866 | 0.055 |
Prop workers involved in agriculture | 0.001 | 0.130 | 0.010 | 0.016 |
Prop households (HHs) with specified assets * | 0.001 | 0.725 | 0.236 | 0.176 |
Prop HHs with electricity as lighting source | 0.283 | 1.000 | 0.947 | 0.151 |
Prop HHs owning their house | 0.000 | 0.906 | 0.636 | 0.182 |
Prop HHs of size 9 persons and above | 0.016 | 0.153 | 0.056 | 0.024 |
Beta (p-Value) | Lower 95% CI | Upper 95% CI | Exp (Beta) | Wald Chi-Sq. | |
---|---|---|---|---|---|
Population density | 0.516 (0.002) ** | 0.187 | 0.846 | 1.675 | 9.417 |
Proportion children | 0.922 (0.024) * | 0.120 | 1.724 | 2.514 | 5.074 |
Prop Scheduled Caste | −0.110 (0.406) | −0.370 | 0.150 | 0.896 | 0.690 |
Prop literate | 0.495 (0.001) ** | 0.202 | 0.788 | 1.640 | 10.965 |
Prop workers in agriculture | 0.394 (0.016) * | 0.074 | 0.714 | 1.483 | 5.815 |
Prop HHs with specified assets | −1.978 (0.017) * | −3.596 | −0.359 | 0.138 | 5.737 |
Prop HHs with electricity | −0.605 (0.010) * | −1.068 | −0.143 | 0.546 | 6.577 |
Prop HHs owning their house | 0.133 (0.778) | −0.790 | 1.055 | 1.142 | 0.070 |
Prop HHs of size 9 and above | 0.696 (0.017) * | 0.124 | 1.269 | 2.006 | 5.685 |
Intercept | −2.112 (0.062) | −4.329 | 0.105 | 0.121 | 3.487 |
Scale | 0.696 | ||||
Model fit (QIC) | 1845.262 | ||||
N (wards) | 281 |
Beta (p-Value) | Lower 95% CI | Upper 95% CI | Exp (Beta) | Wald Chi-Sq. | |
---|---|---|---|---|---|
Population density | 1.182 (0.000) *** | 0.813 | 1.551 | 3.261 | 39.352 |
Proportion children | 0.434 (0.023) * | 0.060 | 0.808 | 1.543 | 5.171 |
Prop Scheduled Caste | −0.862 (0.001) ** | −1.042 | −0.682 | 0.422 | 88.097 |
Prop literate | 0.649 (0.003) ** | 0.224 | 1.073 | 1.914 | 8.976 |
Prop workers in agriculture | −0.012 (0.937) | −0.321 | 0.296 | 0.988 | 0.006 |
Prop HHs with specified assets | −1.084 (0.000) *** | −1.310 | −0.857 | 0.338 | 87.998 |
Prop HHs with electricity | 0.307 (0.064) | −0.017 | 0.632 | 1.359 | 3.442 |
Prop HHs owning their house | 0.033 (0.825) | −0.260 | 0.326 | 1.034 | 0.049 |
Prop HHs of size 9 and above | −0.596 (0.005) ** | −1.013 | −0.179 | 0.551 | 7.848 |
Intercept | 0.536 (0.060) | −0.023 | 1.094 | 1.709 | 3.534 |
Scale | 3.464 | ||||
Model fit (QIC) | 1051.501 | ||||
N (wards) | 281 |
Beta (p-Value) | Lower 95% CI | Upper 95% CI | Wald Chi-Sq. | |
---|---|---|---|---|
Population density | −0.028 (0.000) *** | −0.037 | −0.019 | 39.134 |
Proportion children | 0.001 (0.633) | −0.004 | 0.007 | 0.228 |
Prop Scheduled Caste | 0.005 (0.000) ** | 0.002 | 0.008 | 9.125 |
Prop literate | 0.011 (0.001) ** | −0.017 | −0.004 | 10.870 |
Prop workers in agriculture | 0.002 (0.356) | −0.002 | 0.007 | 0.852 |
Prop HHs with specified assets | 0.013 (0.010) ** | 0.003 | 0.023 | 6.650 |
Prop HHs with electricity | 0.008 (0.006) ** | 0.002 | 0.013 | 7.670 |
Prop HHs owning their house | −0.005 (0.030) ** | −0.010 | 0.000 | 4.710 |
Prop HHs of size 9 and above | −0.008(0.003) ** | −0.013 | −0.003 | 8.633 |
Intercept | 0.043 (0.000) ** | 0.033 | 0.054 | 64.430 |
Scale | 0.001 | |||
Model fit (QIC) | 32.637 | |||
N (wards) | 281 |
Beta (p-Value) | Lower 95% CI | Upper 95% CI | Wald Chi-Sq. | |
---|---|---|---|---|
Population density | −0.046 (0.000) *** | −0.062 | −0.030 | 32.202 |
Proportion children | 0.017 (0.008) ** | 0.004 | 0.029 | 7.127 |
Prop Scheduled Caste | 0.009 (0.005) ** | 0.003 | 0.015 | 7.840 |
Prop literate | −0.020 (0.000) *** | −0.028 | −0.011 | 21.364 |
Prop workers in agriculture | 0.010 (0.000) *** | 0.005 | 0.015 | 14.746 |
Prop HHs with specified assets | 0.024 (0.000) *** | 0.016 | 0.032 | 33.704 |
Prop HHs with electricity | 0.014 (0.000) *** | 0.006 | 0.023 | 12.223 |
Prop HHs owning their house | −0.009 (0.002) ** | −0.014 | −0.003 | 9.962 |
Prop HHs of size 9 and above | −0.016 (0.000) *** | −0.022 | −0.010 | 24.834 |
Intercept | 0.145 (0.000) *** | 0.124 | 0.166 | 180.852 |
Scale | 0.005 | |||
Model fit (QIC) | 1051.501 | |||
N (wards) | 281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, B.C.; Chakraborty, J.; Basu, P. Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India. Int. J. Environ. Res. Public Health 2021, 18, 4800. https://doi.org/10.3390/ijerph18094800
Mitchell BC, Chakraborty J, Basu P. Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India. International Journal of Environmental Research and Public Health. 2021; 18(9):4800. https://doi.org/10.3390/ijerph18094800
Chicago/Turabian StyleMitchell, Bruce C., Jayajit Chakraborty, and Pratyusha Basu. 2021. "Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India" International Journal of Environmental Research and Public Health 18, no. 9: 4800. https://doi.org/10.3390/ijerph18094800
APA StyleMitchell, B. C., Chakraborty, J., & Basu, P. (2021). Social Inequities in Urban Heat and Greenspace: Analyzing Climate Justice in Delhi, India. International Journal of Environmental Research and Public Health, 18(9), 4800. https://doi.org/10.3390/ijerph18094800