A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteriophage
2.2. Construction of the CDA
2.3. Detection of Corona Discharge, Ionic Wind and Negative Ions in the Electric Field of the CDA
2.4. Capture of Atomised Viral Sample with the CDA
2.5. Construction of an Ozone Generator (OG) and Assay for Ozone Production
2.6. Total CDA System for Practical Use
2.7. Statistical Analysis
3. Results and Discussion
3.1. CDA Production of Negative Ions and Ionic Wind in the Electric Field
3.2. CDA Capture of Phage-Containing Mist Particles of the Same Size as Respiratory Droplets
3.3. OG for Phage-Sterilisation Treatment Constructed with Slight Modification of the CDA
3.4. Total CDA System as a Practical Tool for Trapping and Inactivating Phages in Mist Particles Sprayed into the Air
3.5. Fabrication of the CDA and OG at Considerably Low Cost
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Infection Prevention and Control (IPC) for Novel Coronavirus (COVID-19) Course. Available online: https://openwho.org/courses/COVID-19-IPC-EN (accessed on 10 December 2020).
- World Health Organization. Infection Prevention and Control of Epidemic- and Pandemic-Prone Acute Respiratory Infections in Health Care; World Health Organization: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf?sequence=1 (accessed on 10 December 2020).
- Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.-S.; Liu, L.; Zhang, Z. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis. 2020, 26, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Hogan, C.J.; Lee, M.H.; Biswas, P. Capture of viral particles in soft X-ray-enhanced corona systems: Charge distribution and transport characteristics. Aerosol Sci. Technol. 2004, 38, 475–486. [Google Scholar] [CrossRef]
- Kettleson, E.M.; Ramaswami, B.; Hogan, C.J.; Lee, M.-H.; Statyukha, G.A.; Biswas, P.; Angenent, L.T. Airborne virus capture and inactivation by an electrostatic particle collector. Environ. Sci. Technol. 2009, 43, 5940–5946. [Google Scholar] [CrossRef]
- Kettleson, E.M.; Schriewer, J.M.; Buller, R.M.L.; Biswas, P. Soft X-ray enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections. Appl. Environ. Microbiol. 2013, 79, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Li, C.S.; Wen, Y.M. Control effectiveness of electrostatic precipitation on airborne microorganisms. Aerosol Sci. Technol. 2003, 37, 933–938. [Google Scholar] [CrossRef]
- Lee, S.-A.; Willeke, K.; Mainelis, G.; Adhikari, A.; Wang, H.; Reponen, T.; Grinshpun, S.A. Assessment of electrical charge on airborne microorganisms by a new bioaerosol sampling method. J. Occup. Environ. Hyg. 2004, 1, 127–138. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ikeda, H.; Moriura, N.; Tanaka, N.; Shimizu, K.; Oichi, W.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Higashi, K.; et al. A new spore precipitator with polarized dielectric insulators for physical control of tomato powdery mildew. Phytopathology 2006, 96, 967–974. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Electrostatic guarding of bookshelves from mould-free preservation of valuable library books. Aerobiologia 2014, 30, 435–444. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Toyoda, H. An electrostatic-barrier-forming window that captures airborne pollen grains to prevent pollinosis. Int. J. Environ. Res. Public Health 2017, 14, 82. [Google Scholar] [CrossRef]
- Tanaka, N.; Matsuda, Y.; Kato, E.; Kokabe, K.; Furukawa, T.; Nonomura, T.; Honda, K.; Kusakari, S.; Imura, T.; Kimbara, J.; et al. An electric dipolar screen with oppositely polarized insulators for excluding whiteflies from greenhouses. Crop Prot. 2008, 27, 215–221. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. A simple electrostatic device for eliminating tobacco sidestream to prevent passive smoking. Instruments 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Mainelis, G.; An, H.R. Inactivation of microorganisms using electrostatic fields. Environ. Sci. Technol. 2005, 39, 3338–3344. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.; et al. Aerosol and Surface Stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Vidaver, A.K.; Koski, R.K.; Van Etten, J.L. Bacteriophage φ6: A Lipid-containing virus of Pseudomonas phaseolicola. J. Virol. 1973, 11, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Jonassen, N. (Ed.) Electrostatic effects and Abatement of static electricity. In Electrostatics, 2nd ed.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 75–120. [Google Scholar]
- Aplin, K.L.; Harrison, R.G. A computer-controlled Gerdien atmospheric ion counter. Rev. Sci. Instrum. 2000, 71, 3037–3041. [Google Scholar] [CrossRef]
- Nishimura, H. Investigation of practical usefulness of body-worn devices that claim to release chlorine dioxide. Jpn. J. Infect. Prevent. Cont. 2017, 32, 222–226, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Francis, A.W. Ozone. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., et al., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 664–666. [Google Scholar]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; McLaughlsn, J.C., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., et al., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Air/Droptlet Borne Disease. Available online: https://www.moh.gov.sg/docs/librariesprovider5/resources-statistics/reports/air-droplet-borne-diseases.pdf (accessed on 10 January 2021).
- Spire, B.; Barré-Sinoussi, F.; Dormont, D.; Montagnier, L.; Chermann, J.C. Inactivation of lymphadenopathy-associated virus by heat, gamma rays, and ultraviolet. Lancet 1985, 325, 188–189. [Google Scholar] [CrossRef]
- Kowalski, W.J.; Bahnfleth, W.P.; Witham, D.L.; Severin, B.F.; Whittam, T.S. Mathematical modeling of ultraviolet germicidal irradiation for air disinfection. Quant. Microbiol. 2000, 2, 249–270. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Li, C.-S. Ozone for inactivation of aerosolized bacteriophages. Aerosol Sci. Technol. 2006, 40, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Kleinheksel, A.; Lee, E.M.; Qiao, Z.; Wigginton, K.R.; Clack, H.L. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 2019, 52, 255201. [Google Scholar] [CrossRef] [PubMed]
- Vohra, A.; Goswami, D.Y.; Deshpande, D.A.; Block, S.S. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J. Ind. Microbiol. Biotechnol. 2005, 32, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Kariwa, H.; Fujii, N.; Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Jpn. J. Vet. Res. 2004, 52, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.U.; Yun, S.H.; Ji, J.H.; Bae, G.N. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J. Microbiol. Biotechnol. 2008, 18, 176–182. [Google Scholar] [PubMed]
- Ogata, N.; Sakasegawa, M.; Miura, T.; Shibata, T.; Takigawa, Y.; Taura, K.; Taguchi, K.; Matsubara, K.; Nakahara, K.; Kato, D.; et al. Inactivation of airborne bacteria and viruses using extremely low concentrations of chlorine dioxide gas. Pharmacology 2016, 97, 301–306. [Google Scholar] [CrossRef]
- Katzenelson, E.; Kletter, B.; Shuval, H.I. Inactivation kinetics of viruses and bacteria in water by use of ozone. J. Am. Water Works Assoc. 1974, 66, 725–729. [Google Scholar] [CrossRef]
- Burleson, G.R.; Murray, T.M.; Pollard, M. Inactivation of viruses and bacteria by ozone, with and without sonication. Appl. Microbiol. 1975, 29, 340–344. [Google Scholar] [CrossRef]
- Vestergård, B. Establishing and maintaining specific pathogen free (SPF) conditions in aqueous solutions using ozone. Adv. Space Res. 1994, 14, 387–393. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- van Os, E.A. Design of sustainable hydroponic systems in relation to environment–friendly disinfection methods. Acta Hortic. 2001, 548, 197–205. [Google Scholar] [CrossRef]
- Kim, J.-H.; Rennecker, J.L.; Tomiak, R.B.; Marińas, B.J.; Miltner, R.J.; Owens, J.H. Inactivation of Cryptosporidium Oocysts in a pilot-scale ozone bubble-diffuser contactor. II: Model validation and application. J. Environ. Eng. 2002, 128, 1–11. [Google Scholar] [CrossRef]
- Takayama, M.; Ebihara, K.; Stryczewska, H.; Ikegami, T.; Gyoutoku, Y.; Kubo, K.; Tachibana, M. Ozone generation by dielectric barrier discharge for soil sterilization. Thin Solid Films 2006, 506, 396–399. [Google Scholar] [CrossRef]
- Farooq, S.; Chian, E.S.; Engelbrecht, R.S. Basic concepts in disinfection with ozone. J. Water Pollut. Control Fed. 1977, 49, 1818–1831. [Google Scholar]
- Haas, C.N.; Gould, J.P. Disinfection. J. Water Pollut. Control Fed. 1979, 51, 1232–1242. [Google Scholar]
- Vanachter, A.; Thys, L.; Van Wambeke, E.; Van Assche, C. Possible use of ozone for disinfestation of plant nutrient solutions. Acta Hortic. 1988, 221, 295–302. [Google Scholar] [CrossRef]
- Runia, W.T. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 1995, 382, 221–229. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsuda, Y.; Nonomura, T.; Ikeda, H.; Tamura, N.; Kusakari, S.; Kimbara, J.; Toyoda, H. Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol. 2007, 56, 987–997. [Google Scholar] [CrossRef]
- World Health Organization. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations. Available online: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed on 10 January 2021).
- Bahl, P.; Doolan, C.; de Silva, C.; Chughtai, A.A.; Bourouiba, L.; MacIntyre, C.R. Airborne or droplet precautions for health workers treating COVID-19? J. Infect. Dis. 2020, jiaa189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, R.B. Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 2000, 35, 763–772. [Google Scholar] [CrossRef]
Voltage (−kV) Applied to the CDA | Phage Concentration (PFU/mL) Used for Atomization | ||
---|---|---|---|
105 | 106 | 107 | |
3 | 0 a | 0.4 ± 0.4 a | 195.2 ± 11.6 a |
4 | 0 a | 0.8 ± 0.50 a | 273.6 ± 15.8 b |
5 | 0 a | 5.0 ± 2.1 a | 327.6 ± 27.9 b |
6 | 0 a | 22.4 ± 7.7 b | 844.4 ± 88.0 c |
7 | 1.4 ± 0.6 b | 91.0 ± 18.9 c | 1030.0 ± 84.5 c |
8 | 1.5 ± 1.0 b | 231.2 ± 26.4 d | 1335.8 ± 81.4 d |
9 | 1.2 ± 0.8 b | 215.2 ± 13.7 d | 1399.2 ± 62.3 d |
10 | 1.4 ± 0.6 b | 258.4 ± 55.6 d | 1470.4 ± 42.4 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Takami, T.; Toyoda, H. A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission. Int. J. Environ. Res. Public Health 2021, 18, 4934. https://doi.org/10.3390/ijerph18094934
Kakutani K, Matsuda Y, Nonomura T, Takikawa Y, Takami T, Toyoda H. A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission. International Journal of Environmental Research and Public Health. 2021; 18(9):4934. https://doi.org/10.3390/ijerph18094934
Chicago/Turabian StyleKakutani, Koji, Yoshinori Matsuda, Teruo Nonomura, Yoshihiro Takikawa, Takeshi Takami, and Hideyoshi Toyoda. 2021. "A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission" International Journal of Environmental Research and Public Health 18, no. 9: 4934. https://doi.org/10.3390/ijerph18094934
APA StyleKakutani, K., Matsuda, Y., Nonomura, T., Takikawa, Y., Takami, T., & Toyoda, H. (2021). A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission. International Journal of Environmental Research and Public Health, 18(9), 4934. https://doi.org/10.3390/ijerph18094934