The Comprehensive Machine Learning Analytics for Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable Name | Variable Types | Variable Description | |
---|---|---|---|
1. Demographics | |||
age | Continuous | Age in Years | |
sex | Categorical | Participant Sex | |
alc | Categorical | Alcohol drinking in the past 12 months (Y/N) | |
alcw | Continuous | Average number of drinks per week | |
currentSmoker | Categorical | Self-Reported Cigarette Smoking Status | |
everSmoker | Categorical | Self-Reported History of Cigarette Smoking | |
2. Anthropometrics | |||
weight | Continuous | Weight (kg) | |
height | Continuous | Height (cm) | |
BMI | Continuous | Body Mass Index (kg/m2) | |
waist | Continuous | Waist Circumference (cm) | |
neck | Continuous | Neck Circumference (cm) | |
bsa | Continuous | Calculated Body Surface Area (m2) | |
obesity3cat | Categorical | Ideal Health: BMI < 25 (Normal) Intermediate Health: 25 ≤ BMI < 30 (Overweight) Poor Health: BMI ≥ 30 (Obese) | |
3. Medications | |||
medAcct | Categorical | Medication Accountability | |
BPmedsSelf | Categorical | Self-Reported Blood Pressure Medication Status (Y/N) | |
BPmeds | Categorical | Blood Pressure Medication Status (Y/N) | |
DMmedsIns | Categorical | Diabetic Insulin Medication Status (Y/N) | |
DMmedType | Categorical | Diabetes Medication Type | |
dmMedsSelf | Categorical | Defined as Yes (Treated), if the participant reported being on diabetic | |
DMmeds | Categorical | Diabetic Medication Status (Y/N) | |
statinMedsSelf | Categorical | Defined as Yes (Treated), if the participant reported being on statin medication. | |
statinMeds | Categorical | Statin Medication Status (Y/N) | |
hrtMedsSelfEver | Categorical | Self Reported HRT Medication Status (Y/N) | |
hrtMedsSelf | Categorical | Self Reported Current HRT Medication Status (Y/N) | |
hrtMeds | Categorical | HRT Medication Status (Y/N) | |
betaBlkMeds | Categorical | Beta Blocker Medication Status (Y/N) | |
calBlkMeds | Categorical | Calcium Channel Blocker Medication Status (Y/N) | |
diureticMeds | Categorical | Diuretic Medication Status (Y/N) | |
antiArythMedsSelf | Categorical | Defined as Yes (Treated), if the participant reported being on antiarrhythmic medication. | |
antiArythMeds | Categorical | Antiarrhythmic Medication Status (Y/N) | |
4. Hypertension | |||
sbp | Continuous | Systolic Blood Pressure (mmHg) | |
dbp | Continuous | Diastolic Blood Pressure (mmHg) | |
BPjnc7 | Categorical | JNC 7 BP Classification | |
HTN | Categorical | Hypertension Status | |
ABI | Continuous | Ankle Brachial Index | |
5. Diabetes | |||
FPG | Continuous | Fasting Plasma Glucose Level (mg/dL) | |
FPG3cat | Categorical | Fasting Plasma Glucose Categorization | |
HbA1c | Continuous | NGSP Hemoglobin HbA1c (%) | |
HbA1c3cat | Categorical | NGSP Hemoglobin HbA1c (%) Categorization | |
HbA1cIFCC | Continuous | IFCC Hemoglobin HbA1c in SI units (mmol/mol) | |
HbA1cIFCC3cat | Categorical | IFCC Hemoglobin HbA1c in SI units (mmol/mol) Categorization | |
fastingInsulin | Continuous | Fasting Insulin (Plasma IU/mL) | |
HOMA-B | Continuous | HOMA-B | |
HOMA-IR | Continuous | HOMA-IR | |
Diabetes | Categorical | Diabetes Status (ADA 2010) | |
diab3cat | Categorical | Diabetes Categorization | |
6. Lipids | |||
ldl | Continuous | Fasting LDL Cholesterol Level (mg/dL) | |
ldl5cat | Categorical | Fasting LDL Categorization | |
hdl | Continuous | Fasting HDL Cholesterol Level (mg/dL) | |
hdl3cat | Categorical | Fasting HDL Categorization | |
trigs | Continuous | Fasting Triglyceride Level (mg/dL) | |
trigs4cat | Categorical | Fasting Triglyceride Categorization | |
totChol | Continuous | Fasting Total Cholesterol (mg/dL) | |
7. Biomarkers | |||
hsCRP | Continuous | High Sensitivity C-Reactive Protein (Serum mg/dL) | |
endothelin | Continuous | Endothelin-1 (Serum pg/mL) | |
sCort | Continuous | Concentration of Cortisol Levels (Serum µg/dL) | |
reninRIA | Continuous | Renin Activity RIA (Plasma ng/mL/hr) | |
reninIRMA | Continuous | Renin Mass IRMA (Plasma pg/mL) | |
aldosterone | Continuous | “Concentration of Aldosterone | |
leptin | Continuous | (Serum ng/dL)” | |
adiponectin | Continuous | Concentration of Leptin (Serum ng/mL) | |
8. Renal | |||
SCrCC | Continuous | CC Calibrated Serum Creatinine (mg/dL) | |
SCrIDMS | Continuous | IDMS Tracebale Serum Creatinine (mg/dL) | |
eGFRmdrd | Continuous | eGFR MDRD | |
eGFRckdepi | Continuous | eGFR CKD-Epi | |
CreatinineU24hr | Continuous | 24-hour urine creatinine (g/24hr) | |
CreatinineUSpot | Continuous | Random spot urine creatinine (mg/dL) | |
AlbuminUSpot | Continuous | Random spot urine albumin (mg/dL) | |
AlbuminU24hr | Continuous | 24-hour urine albumin (mg/24hr) | |
DialysisEver | Categorical | Self-reported dialysis | |
DialysisDuration | Continuous | Self-reported duration on dialysis (years) | |
CKDHx | Categorical | Chronic Kidney Disease History | |
9. Respiratory | |||
asthma | Categorical | Physician-Diagnosed Asthma | |
maneuvers | Continuous | Successful Spirometry Maneuvers | |
FVC | Continuous | Forced Vital Capacity (L) | |
FEV1 | Continuous | Forced Expiratory Volume in 1 s (L) | |
FEV6 | Continuous | Forced Expiratory Volume in 6 s (L) | |
FEV1PP | Continuous | FEV1 % Predicted | |
FVCPP | Continuous | FVC % Predicted | |
10. Echocardiogram | |||
LVMecho | Continuous | Left Ventricular Mass (g) from Echo | |
LVMindex | Continuous | Left Ventricular Mass Indexed by Height(m)^2.7 | |
LVH | Categorical | Left Ventricular Hypertrophy | |
EF | Continuous | Ejection Fraction | |
EF3cat | Categorical | Ejection Fraction Categorization | |
DiastLVdia | Continuous | Diastolic LV Diameter (mm) | |
SystLVdia | Continuous | Systolic LV Diameter (mm) | |
FS | Categorical | Fractional Shortening | |
RWT | Continuous | Relative Wall Thickness | |
11. Electrocardiogram | |||
ConductionDefect | Categorical | Conduction Defect | |
MajorScarAnt | Categorical | Anterior QnQs Major Scar | |
MinorScarAnt | Categorical | Anterior QnQs Minor Scar | |
RepolarAnt | Categorical | Anterior Repolarization Abnormality | |
MIAnt | Categorical | Anterior ECG defined MI | |
MajorScarPost | Categorical | Posterior QnQs Major Scar | |
MinorScarPost | Categorical | Posterior QnQs Minor Scar | |
RepolarPost | Categorical | Posterior Repolarization Abnormality | |
MIPost | Categorical | Posterior ECG defined MI | |
MajorScarAntLat | Categorical | Anterolateral QnQs Major Scar | |
MinorScarAntLat | Categorical | Anterolateral QnQs Minor Scar | |
RepolarAntLat | Categorical | Anterolateral Repolarization Abnormality | |
MIAntLat | Categorical | Anterolateral ECG defined MI | |
MIecg | Categorical | ECG determined MI | |
ecgHR | Continuous | Heart Rate (bpm) | |
Afib | Categorical | Atrial Fibrillation | |
Aflutter | Categorical | Atrial Flutter | |
QRS | Continuous | QRS Interval (msec) | |
QT | Continuous | QT Interval (msec) | |
QTcFram | Continuous | Framingham Corrected QT Interval (msec) | |
QTcBaz | Continuous | Bazett Corrected QT Interval (msec) | |
QTcHod | Continuous | Hodge Corrected QT Interval (msec) | |
QTcFrid | Continuous | Fridericia Corrected QT Interval (msec) | |
CV | Continuous | Cornell Voltage (microvolts) | |
LVHcv | Categorical | Cornell Voltage Criteria | |
12. Stroke History | |||
speechLossEver | Categorical | History of Speech Loss | |
visionLossEver | Categorical | History of Sudden Loss of Vision | |
doubleVisionEver | Categorical | History of Double Vision | |
numbnessEver | Categorical | History of Numbness | |
paralysisEver | Categorical | History of Paralysis | |
dizzynessEver | Categorical | History of Dizziness | |
strokeHx | Categorical | History of Stroke | |
13. CVD History | |||
MIHx | Categorical | Self-Reported History of MI | |
CardiacProcHx | Categorical | Self-Reported history of Cardiac Procedures | |
CHDHx | Categorical | Coronary Heart Disease Status/History | |
CarotidAngioHx | Categorical | Self-Reported history of Carotid Angioplasty | |
CVDHx | Categorical | Cardiovascular Disease History | |
14. Healthcare Access | |||
Insured | Categorical | Visit 1 Health Insurance Status | |
15. Psychosocial | |||
Income | Categorical | Income Status | |
occupation | Categorical | Occupational Status | |
edu3cat | Categorical | Education Attainment Categorization | |
HSgrad | Categorical | High School Graduate | |
dailyDiscr | Continuous | Everyday Discrimination Experiences | |
lifetimeDiscrm | Continuous | Major Life Events Discrimination | |
discrmBurden | Continuous | Discrimination Burden | |
depression | Continuous | Total Depressive Symptoms Score | |
weeklyStress | Continuous | Total Weekly Stress Score | |
perceivedStress | Continuous | Total Global Stress Score | |
16. Life’s Simple 7 | |||
SMK3cat | Categorical | AHA Smoking Categorization | |
idealHealthSMK | Categorical | Indicator for Ideal Health via Smoking Status | |
BMI3cat | Categorical | AHA BMI Categorization | |
idealHealthBMI | Categorical | Indicator for Ideal Health via BMI | |
PA3cat | Categorical | AHA Physical Activity Categorization | |
idealHealthPA | Categorical | Indicator for Ideal Health via Physical Activity | |
nutrition3cat | Categorical | AHA Nutrition Categorization | |
idealHealthNutrition | Categorical | Indicator for Ideal Health via Nutrition | |
totChol3cat | Categorical | AHA Total Cholesterol Categorization | |
idealHealthChol | Categorical | Indicator for Ideal Health via Total Cholesterol | |
BP3cat | Categorical | AHA BP Categorization | |
idealHealthBP | Categorical | Indicator for Ideal Health via BP | |
glucose3cat | Categorical | AHA Glucose Categorization | |
idealHealthDM | Categorical | Indicator for Ideal Health via Glucose | |
17. Nutrition | |||
vitaminD2 | Continuous | 25(OH) Vitamin D2 (ng/mL) | |
vitaminD3 | Continuous | 25(OH) Vitamin D3 (ng/mL) | |
vitaminD3epimer | Continuous | ep-25(OH) Vitamin D3 (ng/mL) | |
darkgrnVeg | Continuous | Dark-green Vegetables | |
eggs | Continuous | Eggs | |
fish | Continuous | Fish | |
18. Physical Activity | |||
sportIndex | Continuous | Sport Index | |
hyIndex | Continuous | Home/Yard Index | |
activeIndex | Continuous | Active Living Index | |
19. Risk Scores | |||
frs_chdtenyrrisk | Continuous | Framingham Risk Score-Coronary Heart Disease | |
frs_cvdtenyrrisk | Continuous | Framingham Risk Score-Cardiovascular Disease | |
frs_atpiii_tenyrrisk | Continuous | Framingham Risk Score-Adult Treatment Panel (III)—Coronary Heart Disease | |
rrs_tenryrisk | Continuous | Reynolds Risk Score | |
ascvd_tenyrrisk | Continuous | American College of Cardiology—American Heart Association—Atherosclerotic Cardiovascular Disease |
References
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Roger, V.L. Epidemiology of heart failure. Circ. Res. 2013, 113, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, H.; Kronmal, R.; Bluemke, D.A.; Olson, J.; Shea, S.; Liu, K.; Burke, G.L.; Lima, J.A. Differences in the incidence of congestive heart failure by ethnicity: The multi-ethnic study of atherosclerosis. Arch. Intern. Med. 2008, 168, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Bibbins-Domingo, K.; Pletcher, M.J.; Lin, F.; Vittinghoff, E.; Gardin, J.M.; Arynchyn, A.; Lewis, C.E.; Williams, O.D.; Hulley, S.B. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 2009, 360, 1179–1190. [Google Scholar] [CrossRef] [Green Version]
- Langley, P. Elements of Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1996. [Google Scholar]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Leinweber, D.J. Stupid data miner tricks: Overfitting the S&P 500. J. Invest. 2007, 16, 15–22. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Breiman, L.J. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Casanova, R.; Saldana, S.; Simpson, S.L.; Lacy, M.E.; Subauste, A.R.; Blackshear, C.; Wagenknecht, L.; Bertoni, A.G. Prediction of incident diabetes in the Jackson Heart Study using high-dimensional machine learning. PLoS ONE 2016, 11, e0163942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Jonsson, P.; Wohlin, C. An evaluation of k-nearest neighbour imputation using likert data. In Proceedings of the 10th International Symposium on Software Metrics, Chicago, IL, USA, 22 November 2004; pp. 108–118. [Google Scholar]
- Stekhoven, D.J.; Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory (COLT’92), Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Bauters, C.; Lamblin, N.; Mc Fadden, E.P.; Van Belle, E.; Millaire, A.; De Groote, P. Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc. Diabetol. 2003, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Damman, K.; Van Veldhuisen, D.J.; Navis, G.; Vaidya, V.S.; Smilde, T.D.; Westenbrink, B.D.; Bonventre, J.V.; Voors, A.A.; Hillege, H.L. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 2010, 96, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metra, M.; Cotter, G.; Gheorghiade, M.; Dei Cas, L.; Voors, A.A. The role of the kidney in heart failure. Eur. Heart J. 2012, 33, 2135–2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echouffo-Tcheugui, J.B.; Greene, S.J.; Papadimitriou, L.; Zannad, F.; Yancy, C.W.; Gheorghiade, M.; Butler, J. Population risk prediction models for incident heart failure: A systematic review. Circ. Heart Fail. 2015, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Spinar, J.; Jarkovsky, J.; Spinarova, L.; Mebazaa, A.; Gayat, E.; Vitovec, J.; Linhart, A.; Widimsky, P.; Miklik, R.; Zeman, K.; et al. AHEAD score--Long-term risk classification in acute heart failure. Int. J. Cardiol. 2016, 202, 21–26. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Sung, S.-H.; Cheng, H.-M.; Huang, W.-M.; Wu, C.-L.; Huang, C.-J.; Hsu, P.-F.; Yeh, J.-S.; Guo, C.-Y.; Yu, W.-C.; et al. Performance of AHEAD Score in an Asian Cohort of Acute Heart Failure With Either Preserved or Reduced Left Ventricular Systolic Function. J. Am. Heart Assoc. 2017, 6, e004297. [Google Scholar] [CrossRef]
- Guo, C.Y.; Chan, C.H.; Chou, Y.C.; Sung, S.H.; Cheng, H.M. A Statistical Predictive Model Consistent Within a 5-Year Follow-up Period for Patients with Acute Heart Failure. J. Chin. Med Assoc. 2020, in press. [Google Scholar] [CrossRef]
- Alotaibi, F.S. Implementation of Machine Learning Model to Predict Heart Failure Disease. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef]
- Swedberg, K. Heart failure subtypes: Pathophysiology and definitions. Diabetes Res. Clin. Pract. 2021, 13, 108815. [Google Scholar] [CrossRef]
- Gvozdanović, Z.; Farčić, N.; Šimić, H.; Buljanović, V.; Gvozdanović, L.; Katalinić, S.; Pačarić, S.; Gvozdanović, D.; Dujmić, Ž.; Miškić, B.; et al. The Impact of Education, COVID-19 and Risk Factors on the Quality of Life in Patients with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2021, 27, 2332, PMCID:PMC7956830. [Google Scholar] [CrossRef] [PubMed]
- Segar, M.W.; Vaduganathan, M.; Patel, K.V.; McGuire, D.K.; Butler, J.; Fonarow, G.C.; Basit, M.; Kannan, V.; Grodin, J.L.; Everett, B. Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score. Diabetes Care 2019, 42, 2298–2306. [Google Scholar] [CrossRef]
- Wu, J.; Roy, J.; Stewart, W.F. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care 2010, 48 (Suppl. 6), S106–S113. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics; Nelson Education: Boston, MA, USA, 2015. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Baseline Characteristic | Total Population n = 3327 | Non-HF n = 3081 (92.6%) | HF n = 246 (7.4%) |
---|---|---|---|
Age | 54.96 (12.59) | 54.24 (12.37) | 63.91 (11.98) |
BMI | 31.82 (7.2) | 31.72 (7.18) | 33.02 (7.31) |
Waist | 100.83 (16.03) | 100.4 (15.93) | 106.9 (16.14) |
High School Graduate | 2761 (83.26%) | 2607 (84.92%) | 154 (62.60%) |
Gender | |||
Male | 1228 (36.91%) | 1132 (36.74%) | 96 (39.02%) |
Female | 2099 (63.09%) | 1949 (63.26%) | 150 (60.98%) |
Current Smoker | 406 (12.31%) | 374 (12.25%) | 32 (13.11%) |
Hypertension (HTN) | 1845 (55.47%) | 1644 (53.38%) | 201 (81.71%) |
Diabetes Mellitus (DM) | 710 (21.5%) | 593 (19.39%) | 117 (47.95%) |
<1% | <3% | <5% | <10% | <20% | <30% | <40% |
---|---|---|---|---|---|---|
age (0.0923) | age (0.0213) | DMmeds (0.0492) | DMmeds (0.0222) | dmMeds (0.0178) | CVDHx (0.0267) | frs_chdtenyrrisk (0.0507) |
DMmeds (0.0647) | RepolarAntLat (0.0189) | age (0.0290) | Diabetes (0.0192) | MIHx (0.0174) | ascvd_tenyrrisk (0.0260) | ALDOSTERONE (0.0367) |
Diabetes (0.0431) | DMmeds (0.0187) | BP3cat (0.0270) | CVDHx (0.0189) | EF (0.0170) | rrs_tenyrrisk (0.0220) | eGFRmdrd (0.0352) |
eGFRckdepi (0.0315) | Diabetes (0.0180) | HTN (0.0267) | bpjnc7_3 (0.0187) | HbA1cIFCC (0.0150) | numbnessEver (0.0203) | occupation (0.0331) |
MIecg (0.0305) | CVDHx (0.0174) | sbp (0.0237) | CHDHx (0.0176) | HbA1c (0.0148) | nutrition3cat (0.0194) | abi (0.0317) |
RepolarAntLat (0.0297) | eGFRmdrd (0.0173) | eGFRckdepi (0.0233) | eGFRckdepi (0.0174) | strokeHx (0.0141) | FEV1PP (0.0193) | sbp (0.0297) |
antiArythMeds (0.028) | eGFRckdepi (0.0173) | CVDHx (0.0188) | FPG (0.0170) | Diabetes (0.0141) | totchol (0.0186) | calBlkMeds (0.0292) |
RepolarAnt (0.0272) | statinMeds (0.0168) | QTcFrid (0.0187) | age (0.0170) | visionLossEver (0.0140) | asthma (0.0180) | FVC (0.0289) |
statinMeds (0.0268) | edu3cat (0.0163) | BPmeds (0.0184) | sbp (0.0164) | statinMeds (0.0129) | BPmeds (0.0177) | eGFRckdepi (0.0253) |
CVDHx (0.0262) | CardiacProcHx (0.0162) | waist (0.01831) | waist (0.0160) | frs_chdtenyrrisk (0.0129) | HTN (0.0177) | SCrCC (0.0242) |
<1% | <3% | <5% | <10% | <20% | <30% | <40% |
---|---|---|---|---|---|---|
Diabetes (0.0455) | DMmeds (0.0346) | DMmeds (0.0588) | DMmeds (0.0233) | DMmeds (0.0630) | DMmeds (0.0210) | DMmeds (0.0337) |
DMmeds (0.0439) | age (0.0273) | Diabetes (0.0327) | age (0.0221) | age (0.0383) | age (0.0196) | DialysisEver (0.0252) |
age (0.0408) | CVDHx (0.0265) | DialysisEver (0.0243) | eGFRckdepi (0.0185) | Diabetes (0.0297) | Diabetes (0.0158) | CVDHx (0.0207) |
HTN (0.0336) | eGFRckdepi (0.0263) | MIAntLat (0.0191) | Diabetes (0.0183) | DialysisEver (0.0190) | BPmeds (0.0150) | age (0.0151) |
CVDHx (0.0277) | HTN (0.0260) | age (0.0189) | FEV1 (0.0163) | ConductionDefect (0.0183) | CVDHx (0.0147) | Afib (0.0142) |
HSgrad (0.0273) | HSgrad (0.0246) | HSgrad (0.0157) | CVDHx (0.0158) | sex (0.0180) | age (0.0145) | MIHx (0.0136) |
BPmeds (0.0272) | Diabetes (0.0237) | Afib (0.0148) | FVC (0.0156) | occupation (0.0159) | ConductionDefect (0.0141) | eGFRckdepi (0.0129) |
eGFRckdepi (0.0238) | eGFRmdrd (0.0225) | edu3cat (0.0138) | CHDHx (0.0152) | MIant (0.0143) | FEV1 (0.0141) | SystLVdia (0.0128) |
RepolarAntLat (0.0229) | MIHx (0.0212) | CVDHx (0.0135) | eGFRmdrd (0.0151) | CVDHx (0.0129) | eGFRckdepi (0.0139) | EF (0.0117) |
ecgHR (0.0206) | sbp (0.0191) | EF (0.0130) | HbA1cIFCC (0.0148) | idealHealthSMK (0.0125) | CHDHx (0.0126) | ConductionDefect (0.0115) |
<1% | <3% | <5% | <10% | <20% | <30% | <40% |
---|---|---|---|---|---|---|
Diabetes (0.0435) | age (0.0320) | DMmeds (0.0848) | DMmeds (0.0261) | DMmeds (0.0443) | DMmeds (0.0145) | DMmeds (0.0318) |
DMmeds (0.0409) | DMmeds (0.0266) | age (0.0302) | age (0.0177) | age (0.0420) | age (0.0142) | DialysisEver (0.0294) |
age (0.0386) | MIHx (0.0234) | MIant (0.0245) | CVDHx (0.0175) | CVDHx (0.0321) | eGFRmdrd (0.0138) | age (0.0234) |
HTN (0.0299) | Diabetes (0.0213) | CVDHx (0.0241) | eGFRckdepi (0.0173) | EF (0.0188) | Diabetes (0.0130) | Diabetes (0.0145) |
CVDHx (0.0277) | CVDHx (0.0209) | Diabetes (0.0236) | Diabetes (0.0167) | eGFRckdepi (0.0182) | SCrCC (0.0122) | Afib (0.0143) |
BPmeds (0.0274) | eGFRckdepi (0.0205) | HSgrad (0.0206) | eGFRmdrd (0.0153) | FEV1 (0.0179) | eGFRckdepi (0.0118) | CVDHx (0.0128) |
HSgrad (0.0264) | HSgrad (0.0176) | ConductionDefect (0.0201) | FEV1 (0.0153) | ConductionDefect (0.0174) | statinMeds (0.0115) | eGFRckdepi (0.0126) |
eGFRckdepi (0.0222) | HTN (0.0172) | antiArythMedsSelf (0.0152) | CHDHx (0.0152) | MIHx (0.0172) | CVDHx (0.0112) | MIHx (0.0120) |
RepolarAntLat (0.0209) | antiArythMeds (0.0171) | CHDHx (0.1431) | edu3cat (0.0142) | MajorScarAnt (0.0172) | everSmoker (0.0111) | calBlkMeds (0.0116) |
ecgHR (0.0196) | eGFRmdrd (0.0164) | AntiArythMeds (0.1374) | DialysisEver (0.0139) | eGFRmdrd (0.0170) | rrs_tenyrrisk (0.0108) | FEV1 (0.0113) |
<1% | <3% | <5% | <10% | <20% | <30% | <40% |
---|---|---|---|---|---|---|
Diabetes (0.0455) | antiArythMeds (0.0339) | dmMeds (0.0340) | DMmeds (0.0263) | DMmeds (0.0443) | DMmeds (0.0163) | DMmeds (0.0290) |
DMmeds (0.0363) | DMmeds (0.0332) | age (0.0279) | age (0.0251) | DialysisEver (0.0323) | Diabetes (0.0161) | ascvd_tenyrrisk (0.0255) |
age (0.0344) | age (0.0301) | Diabetes (0.0271) | Diabetes (0.0234) | MIAntLat (0.0241) | rrs_tenyrrisk (0.0148) | age (0.0218) |
HTN (0.0336) | eGFRckdepi (0.0241) | eGFRckdepi (0.0269) | CVDHx (0.0218) | Diabetes (0.0208) | age (0.0132) | eGFRckdepi (0.0210) |
CVDHx (0.0318) | HTN (0.0232) | CVDHx (0.0235) | CHDHx (0.0194) | age (0.0194) | ascvd_tenyrrisk (0.0130) | rrs_tenyrrisk (0.0191) |
HSgrad (0.0274) | SCrIDMS (0.0220) | eGFRmdrd (0.0212) | eGFRmdrd (0.0192) | Afib (0.0184) | MIant (0.0127) | frs_cvdtenyrrisk (0.0179) |
eGFRckdepi (0.0243) | MIHx (0.0207) | HSgrad (0.0198) | eGFRckdepi (0.0162) | calBlkMeds (0.0154) | eGFRckdepi (0.0125) | MIHx (0.0162) |
CHDHx (0.0241) | CVDHx (0.0198) | SCrIDMS (0.0187) | HSgrad (0.0162) | CVDHx (0.0152) | CVDHx (0.0118) | LEPTIN (0.0147) |
RepolarAntLat (0.0238) | eGFRmdrd (0.0197) | BPMeds (0.0170) | FEV1 (0.0149) | eGFRckdepi (0.0149) | FEV1 (0.0106) | calBlkMeds (0.0135) |
QTcBaz (0.0221) | Diabetes (0.0195) | HbA1c (0.0158) | SCrIDMS (0.0148) | EF (0.0140) | CHDHx (0.0104) | CardiacProcHx (0.0127) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.-Y.; Wu, M.-Y.; Cheng, H.-M. The Comprehensive Machine Learning Analytics for Heart Failure. Int. J. Environ. Res. Public Health 2021, 18, 4943. https://doi.org/10.3390/ijerph18094943
Guo C-Y, Wu M-Y, Cheng H-M. The Comprehensive Machine Learning Analytics for Heart Failure. International Journal of Environmental Research and Public Health. 2021; 18(9):4943. https://doi.org/10.3390/ijerph18094943
Chicago/Turabian StyleGuo, Chao-Yu, Min-Yang Wu, and Hao-Min Cheng. 2021. "The Comprehensive Machine Learning Analytics for Heart Failure" International Journal of Environmental Research and Public Health 18, no. 9: 4943. https://doi.org/10.3390/ijerph18094943
APA StyleGuo, C. -Y., Wu, M. -Y., & Cheng, H. -M. (2021). The Comprehensive Machine Learning Analytics for Heart Failure. International Journal of Environmental Research and Public Health, 18(9), 4943. https://doi.org/10.3390/ijerph18094943