Biomechanical Aspects of the Foot Arch, Body Balance and Body Weight Composition of Boys Training Football
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
- COP LF—area of left foot imbalances,
- COP RF—right foot imbalances area,
- body COP—the surface of the body’s center of gravity.
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The total length of the longitudinal arch of both feet of the examined boys showed a tendency to flatten in direct proportion to the age of the examined boys. The arches of the foot differ, however, between the right and left roof. If this tendency is maintained in the left foot, it does not take such a strong direction in the right foot.
- The youngest group of the boys under study showed the greatest deviations of the balance, while the group subjected to training for the longest time (the group of the oldest boys) had distinct smaller deviations of the pressure center.
- In the youngest group of boys, correlations between body balance deviations and waist–hip index were observed.
- The given mean values of the body composition parameters reflect changes with the ontogenetic development, basic somatic parameters (body height and weight) and training experience, and thus with the intensity and volume of training.
Practical Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayanthi, N.; Pinkham, C.; Dugas, L.; Patrick, B.; Labella, C. Sports specialization in young athletes: Evidence-based recommendations. Sports Health 2013, 5, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Szwarc, A.; Jaszczur-Nowicki, J.; Aschenbrenner, P.; Zasada, M.; Padulo, J. LP Motion analysis of elite Polish soccer goalkeepers throughout a season. Biol. Sport. 2019, 36, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Egilsson, B.; Dolles, H. “From Heroes to Zeroes”-self-initiated expatriation of talented young footballers. J. Glob. Mobil. HomeExpatr. Manag. Res. 2017, 5, 174–193. [Google Scholar] [CrossRef]
- Hirtz, P. Koordinative Fähigkeiten im Schulsport. (Vielseiting-Variationsreichungewohnt); Volk und W.: Berlin, Germany, 1985. [Google Scholar]
- Islam, M.S.; Kundu, B. Association of Dribbling with Linear and Non-linear Sprints in Young Soccer Players of Bangladesh. Int. J. Med. Public Health 2020, 10, 100–103. [Google Scholar] [CrossRef]
- Alesi, M.; Bianco, A.; Padulo, J.; Luppina, G.; Petrucci, M.; Paoli, A.; Palma, A.; Pepi, A. Motor and cognitive growth following a Football Training Program. Front. Psychol. 2015, 6, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaszczur-Nowicki, J.; Bukowska, J.M.; Lemanek, K.; Klimczak, J.; Kruczkowski, D. Jump height of volleyball players across the league season. Arch Budo Sci. Martial Art Extrem. Sport 2019, 15, 119–127. [Google Scholar]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef]
- Golle, K.; Mechling, H.; Granacher, U. Koordinative Fähigkeiten und Koordinationstraining im Sport. In Bewegung, Training, Leistung und Gesundheit; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–24. [Google Scholar]
- Ergash, N.; Kamila, K.; Kahhor, G.; Fazliddin, K. Development Of Coordination Abilities And Balance Of Primary School Age Children Gulistan State University. Eur. J. Mol. Clin. Med. 2020, 7, 5384–5389. [Google Scholar]
- Amra, F.; Soniawan, V. The Effect of Agility, Foot-Eye Coordination, and Balance on Dribbling Ability: An Ex Post Facto Research at Balai Baru Football Academy Padang. In Proceedings of the 1st Progress in Social Science, Humanities and Education Research Symposium (PSSHERS 2019); Atlantis Press: Paris, France, 2020. [Google Scholar]
- Mańko, G.; Kruczkowski, D.; Niźnikowski, T.; Perliński, J.; Chantsoulis, M.; Pokorska, J.; Łukaszewska, B.; Ziółkowski, A.; Graczyk, M.; Starczyńska, M.; et al. The Effect of Programed Physical Activity Measured with Levels of Body Balance Maintenance. Med. Sci. Monit. 2014, 20, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Jaszczur-Nowicki, J.; Kruczkowski, D.; Bukowska, J. Analysis of the distribution of foot force on the ground before and after a kinaesthetic stimulation. J. Kinesiol. Exerc. Sci. 2019, 29, 19–27. [Google Scholar] [CrossRef]
- Osipov, A.; Tselovalnikova, M.; Klimas, N.; Zhavner, T.; Vapaeva, A.; Mokrova, T. Ealization of Anti Gravity fitness exercises in physical education practice of female students. J. Phys. Educ. Sport 2019, 19, 1429–1434. [Google Scholar] [CrossRef]
- Paillard, T. Relationship Between Sport Expertise and Postural Skills. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Zerf, M. Body composition versus body fat percentage as predictors of posture/balance control mobility and stability among football players under 21 years. Phys. Educ. Stud. 2017, 21, 96. [Google Scholar] [CrossRef] [Green Version]
- Zdunek, M.K.; Marszałek, J.; Domínguez, R. Influence of sport discipline on foot arching and load distribution: Pilot studies. J. Phys. Educ. Sport 2020, 20, 721–728. [Google Scholar] [CrossRef]
- López, N.; Alburquerque, F.; Santos, M. SMDR Evaluation and analysis of the footprint of young individuals. A comparative study between football players and non-players. Eur. J. Anat. 2005, 9, 135–142. [Google Scholar]
- Husain, E.; Angioi, M.; Mehta, R.; Barnett, D.N.; Okholm Kryger, K. A systematic review of plantar pressure values obtained from male and female football and the test methodologies applied. Footwear Sci. 2020, 12, 217–233. [Google Scholar] [CrossRef]
- Guilherme, J.; Garganta, J.; Graça, A.; Seabra, A. Effects of technical training in functional asymmetry of lower limbs in young soccer players. Rev. Bras. Cineantropometria Desempenho Humano 2015, 17, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Santos-Silva, P.R.; Greve, J.M.D.; Novillo, H.N.E.; Haddad, S.; Santos, C.R.P.; Leme, R.B.; Franco, R.R.; Cominato, L.; Araújo, A.T.M.; Santos, F.M.; et al. Futsal improve body composition and cardiorespiratory fitness in overweight and obese children. A pilot study. Mot. Rev. Educ. Física 2018, 24. [Google Scholar] [CrossRef]
- Ørntoft, C.; Larsen, M.N.; Madsen, M.; Sandager, L.; Lundager, I.; Møller, A.; Hansen, L.; Madsen, E.E.; Elbe, A.-M.; Ottesen, L.; et al. Physical Fitness and Body Composition in 10–12-Year-Old Danish Children in Relation to Leisure-Time Club-Based Sporting Activities. Biomed. Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebiedowska, M.; Syczewska, M. Invariant sway propertis in children. Gait Posture 2000, 12, 200–204. [Google Scholar] [CrossRef]
- Riach, C.L.; Starkes, J.L. Velocity of center of pressure excursions as an indicator of postural control system in children. Gait Posture 1994, 2, 167–172. [Google Scholar] [CrossRef]
- Olchowik, G.; Czwalik, A. Effects of Soccer Training on Body Balance in Young Female Athletes Assessed Using Computerized Dynamic Posturography. Appl. Sci. 2020, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Kumala, M.S.; Tinduh, D.; Poerwandari, D. Comparison of Lower Extremities Physical Performance on Male Young Adult Athletes with Normal Foot and Flatfoot. Surabaya Phys. Med. Rehabil. J. 2019, 1, 6–13. [Google Scholar] [CrossRef]
- Jaszczur-Nowicki, J.; Bukowska, J.M.; Kruczkowski, D.; Pieniążek, M.; Mańko, G.; Spieszny, M. Distribution of feet pressure on ground and maintaining body balance among 8–10-year-old children with and without external load application. Acta Bioeng. Biomech. 2020, 22. [Google Scholar] [CrossRef]
- Jaszczur-Nowicki, J.; Bukowska, J.; Kruczkowski, D.; Spieszny, M.; Pieniążek, M.; Mańko, G. Analysis of students’ foot pressure distribution on the ground, as well as their body balance before and after exercise. Phys. Educ. Stud. 2020, 24, 194–204. [Google Scholar] [CrossRef]
- Bibro, M.; Drwal, A.; Jankowicz-Szymańska, A. Ocena wysklepienia oraz rozkładu sił nacisku podeszwowej strony stóp młodych mężczyzn pod wpływem treningu siłowego kończyn dolnych. [The assessment of the effect of strength training of lower limbs on arching and forces distribution of the sole in young. Heal. Promot. Phys. Act. 2018, 3, 7–11. [Google Scholar]
- Bogut, I. Prevalence of Foot Deformities in Young Schoolchildren in Slavonia. Acta Clin. Croat. 2019. [Google Scholar] [CrossRef]
Forefoot LF (%) | Metatarsus LF (%) | Heel LF (%) | Forefoot RF (%) | Metatarsus RF (%) | Heel RF (%) | |
---|---|---|---|---|---|---|
Footballers aged 8–10 (n = 28) | ||||||
Me | 38.40 | 0.10 | 56.70 | 57.30 | 0.80 | 37.95 |
Q1 | 27.45 | 0.00 | 44.70 | 53.38 | 0.00 | 27.15 |
Q3 | 49.93 | 2.70 | 71.80 | 65.23 | 6.65 | 43.65 |
Footballers aged 11–13 (n = 29) | ||||||
Me | 47.80 | 0.40 | 44.80 | 58.40 | 9.80 | 29.20 |
Q1 | 36.50 | 0.00 | 38.10 | 44.50 | 2.30 | 17.60 |
Q3 | 55.20 | 11.20 | 5510 | 69.40 | 20.50 | 49.50 |
Footballers aged 14–16 (n = 33) | ||||||
Me | 43.70 | 12.90 | 40.00 | 45.30 | 2.30 | 49.30 |
Q1 | 39.00 | 7.00 | 37.30 | 37.30 | 0.50 | 43.90 |
Q3 | 49.20 | 21.30 | 45.50 | 49.70 | 11.10 | 56.60 |
Body COP (mm2) | COP LF (mm2) | COP RF (mm2) | |
---|---|---|---|
Footballers aged 8–10 (n = 28) | |||
Me | 360.62 | 40.96 | 73.62 |
Q1 | 195.05 | 20.25 | 25.38 |
Q3 | 792.63 | 109.44 | 245.89 |
Footballers aged 11–13 (n = 29) | |||
Me | 197.84 | 20.36 | 33.65 |
Q1 | 60.96 | 12.25 | 12.54 |
Q3 | 512.23 | 49.52 | 123.17 |
Footballers aged 14–16 (n = 33) | |||
Me | 37.76 | 4.33 | 7.30 |
Q1 | 20.71 | 2.20 | 2.84 |
Q3 | 72.57 | 9.05 | 14.75 |
Variable | Forefoot LF | Metatarsus LF | Heel LF | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Kruskal–Wallis test (p) | 0.100 | 0.000 | 0.001 | |||||||
Age | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | |
Test post hoc with the amendment Bonferroni | 8–10 | X | 0.100 | 0.546 | X | 1.000 | 0.000 | X | 0.122 | 0.001 |
11–13 | 0.100 | X | 1.000 | 1.000 | X | 0.000 | 0.122 | X | 0.321 | |
14–16 | 0.546 | 1.000 | X | 0.000 | 0.000 | X | 0.001 | 0.321 | X |
Variable | Forefoot RF | Metatarsus RF | Heel RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Kruskal–Wallis test (p) | 0.000 | 0.032 | 0.000 | |||||||
Age | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | |
Test post hoc with the amendment Bonferroni | 8–10 | X | 0.869 | 0.000 | X | 0.029 | 0.776 | X | 1.000 | 0.000 |
11–13 | 0.869 | X | 0.003 | 0.029 | X | 0.361 | 1.000 | X | 0.000 | |
14–16 | 0.000 | 0.003 | X | 0.776 | 0.361 | X | 0.000 | 0.000 | X |
Variable | Body COP | LF COP | RF COP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Kruskal–Wallis test (p) | 0.000 | 0.000 | 0.000 | |||||||
Age | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | 8–10 | 11–13 | 14–16 | |
Test post hoc with the amendment Bonferroni | 8–10 | X | 0.013 | 0.000 | X | 0.155 | 0.000 | X | 0.012 | 0.000 |
11–13 | 0.013 | X | 0.001 | 0.155 | X | 0.000 | 0.012 | X | 0.016 | |
14–16 | 0.000 | 0.001 | X | 0.000 | 0.000 | X | 0.000 | 0.000 | X |
TBW | Proteins | Minerals | BFM | FFM | SMM | BMI | PBF | WHR | VFL | Obesity Degree | |
---|---|---|---|---|---|---|---|---|---|---|---|
Footballers aged 8–10 (n = 28) | |||||||||||
Me | 18.10 | 4.85 | 1.80 | 7.15 | 24.75 | 12.65 | 17.50 | 22.15 | 0.77 | 3.00 | 106.5 |
Q1 | 16.15 | 4.20 | 1.47 | 5.00 | 22.00 | 10.98 | 15.70 | 18.20 | 0.75 | 2.00 | 99.75 |
Q3 | 21.55 | 5.70 | 2.06 | 10.33 | 29.50 | 15.43 | 19.35 | 27.30 | 0.79 | 3.00 | 111.0 |
Footballers aged 11–13 (n = 29) | |||||||||||
Me | 28.20 | 7.50 | 2.74 | 7.60 | 38.40 | 20.80 | 18.30 | 16.50 | 0.77 | 3.00 | 98.00 |
Q1 | 25.90 | 6.90 | 2.52 | 6.10 | 35.40 | 18.80 | 17.10 | 13.00 | 0.76 | 2.00 | 94.00 |
Q3 | 30.80 | 8.20 | 2.92 | 10.50 | 42.00 | 22.70 | 20.10 | 21.50 | 0.79 | 4.00 | 105.00 |
Footballers aged 14–16 (n = 33) | |||||||||||
Me | 37.50 | 10.10 | 3.62 | 6.80 | 51.30 | 28.40 | 20.20 | 11.30 | 0.77 | 2.00 | 97.00 |
Q1 | 33.10 | 9.10 | 3.12 | 5.80 | 45.20 | 25.10 | 18.70 | 10.20 | 0.76 | 2.00 | 92.00 |
Q3 | 43.40 | 11.70 | 4.11 | 9.00 | 59.20 | 33.40 | 21.70 | 14.90 | 0.79 | 3.00 | 102.00 |
p | 0.000 | 0.000 | 0.000 | 0.757 | 0.000 | 0.000 | 0.001 | 0.000 | 0.799 | 0.411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowska, J.M.; Jekiełek, M.; Kruczkowski, D.; Ambroży, T.; Jaszczur-Nowicki, J. Biomechanical Aspects of the Foot Arch, Body Balance and Body Weight Composition of Boys Training Football. Int. J. Environ. Res. Public Health 2021, 18, 5017. https://doi.org/10.3390/ijerph18095017
Bukowska JM, Jekiełek M, Kruczkowski D, Ambroży T, Jaszczur-Nowicki J. Biomechanical Aspects of the Foot Arch, Body Balance and Body Weight Composition of Boys Training Football. International Journal of Environmental Research and Public Health. 2021; 18(9):5017. https://doi.org/10.3390/ijerph18095017
Chicago/Turabian StyleBukowska, Joanna M., Małgorzata Jekiełek, Dariusz Kruczkowski, Tadeusz Ambroży, and Jarosław Jaszczur-Nowicki. 2021. "Biomechanical Aspects of the Foot Arch, Body Balance and Body Weight Composition of Boys Training Football" International Journal of Environmental Research and Public Health 18, no. 9: 5017. https://doi.org/10.3390/ijerph18095017
APA StyleBukowska, J. M., Jekiełek, M., Kruczkowski, D., Ambroży, T., & Jaszczur-Nowicki, J. (2021). Biomechanical Aspects of the Foot Arch, Body Balance and Body Weight Composition of Boys Training Football. International Journal of Environmental Research and Public Health, 18(9), 5017. https://doi.org/10.3390/ijerph18095017