Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Properties
2.2. Experiments to Determine Effect of NH4NO3 Addition on Isotopocule Ratios of N2O
2.3. Statistical Analysis
2.4. N2O Source Partition by the Two-End-Member Mixing Approach
3. Results
3.1. Soil Properties
3.2. N2O Production Rates
3.3. Isotopocule Values of N2O
3.4. N2O Source Contributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denk, T.R.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The Nitrogen Cycle: A Review of Isotope Effects and Isotope Modeling Approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zang, S.; Ma, D.; Ren, J.; Chen, Q.; Dong, X. Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China. Int. J. Environ. Res. Public. Health 2019, 16, 2999. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, S.; Yoshida, N.; Koba, K. Isotopocule Analysis of Biologically Produced Nitrous Oxide in Various Environments. Mass Spectrom. Rev. 2015, 36, 135–160. [Google Scholar] [CrossRef]
- Well, R.; Flessa, H.; Xing, L.; Ju, X.T.; Romheld, V. Isotopologue Ratios of N2O Emitted from Microcosms with NH4+ Fertilized Arable Soils under Conditions Favoring Nitrification. Soil Biol. Biochem. 2008, 40, 2416–2426. [Google Scholar] [CrossRef]
- Yu, L.; Harris, E.; Lewicka-Szczebak, D.; Barthel, M.; Blomberg, M.R.A.; Harris, S.J.; Johnson, M.S.; Lehmann, M.F.; Liisberg, J.; Müller, C.; et al. What Can We Learn from N2O Isotope Data?—Analytics, Processes and Modelling. Rapid Commun. Mass Spectrom. 2020, 34, e8858. [Google Scholar] [CrossRef] [PubMed]
- Bracken, C.J.; Lanigan, G.J.; Richards, K.G.; Müller, C.; Tracy, S.R.; Well, R.; Carolan, R.; Murphy, P.N.C. Development and Verification of a Novel Isotopic N2O Measurement Technique for Discrete Static Chamber Samples Using Cavity Ring-down Spectroscopy. Rapid Commun. Mass Spectrom. 2021, 35, e9049. [Google Scholar] [CrossRef]
- Baggs, E.M. A Review of Stable Isotope Techniques for N2O Source Partitioning in Soils: Recent Progress, Remaining Challenges and Future Considerations. Rapid Commun. Mass Spectrom. 2008, 22, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Decock, C.; Six, J. How Reliable Is the Intramolecular Distribution of 15N in N2O to Source Partition N2O Emitted from Soil? Soil Biol. Biochem. 2013, 65, 114–127. [Google Scholar] [CrossRef]
- Yoshida, N.; Toyoda, S. Constraining the Atmospheric N2O Budget from Intramolecular Site Preference in N2O Isotopomers. Nature 2000, 405, 330–334. [Google Scholar] [CrossRef]
- Mohn, J.; Wolf, B.; Toyoda, S.; Lin, C.T.; Liang, M.C.; Bruggemann, N.; Wissel, H.; Steiker, A.E.; Dyckmans, J.; Szwec, L.; et al. Interlaboratory Assessment of Nitrous Oxide Isotopomer Analysis by Isotope Ratio Mass Spectrometry and Laser Spectroscopy: Current Status and Perspectives. Rapid Commun. Mass Spectrom. 2014, 28, 1995–2007. [Google Scholar] [CrossRef]
- Goldberg, S.D.; Borken, W.; Gebauer, G. N2O Emission in a Norway Spruce Forest Due to Soil Frost: Concentration and Isotope Profiles Shed a New Light on an Old Story. Biogeochemistry 2010, 97, 21–30. [Google Scholar] [CrossRef]
- Pérez, T.; Garcia-Montiel, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Cerri, C. Nitrous Oxide Nitrification and Denitrification 15N Enrichment Factors from Amazon Forest Soils. Ecol. Appl. 2006, 16, 2153–2167. [Google Scholar] [CrossRef] [Green Version]
- Pérez, T.; Trumbore, S.E.; Tyler, S.C.; Davidson, E.A.; Keller, M.; de Camargo, P.B. Isotopic Variability of N2O Emissions from Tropical Forest Soils. Glob. Biogeochem. Cycles 2000, 14, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Smemo, K.A.; Ostrom, N.E.; Opdyke, M.R.; Ostrom, P.H.; Bohm, S.; Robertson, G.P. Improving Process-Based Estimates of N2O Emissions from Soil Using Temporally Extensive Chamber Techniques and Stable Isotopes. Nutr. Cycl. Agroecosyst. 2011, 91, 145–154. [Google Scholar] [CrossRef]
- Koehler, B.; Corre, M.D.; Steger, K.; Well, R.; Zehe, E.; Sueta, J.P.; Veldkamp, E. An In-Depth Look into a Tropical Lowland Forest Soil: Nitrogen-Addition Effects on the Contents of N2O, CO2 and CH4 and N2O Isotopic Signatures down to 2-m Depth. Biogeochemistry 2012, 111, 695–713. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A.; Lehmann, J.; Gebauer, G.; Zech, W. Tree Species of the Central Amazon and Soil Moisture Alter Stable Isotope Composition of Nitrogen and Oxygen in Nitrous Oxide Evolved from Soil. Isotopes Environ. Health Stud. 2003, 39, 41–52. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A. Stable Isotope Discrimination during Soil Denitrification: Production and Consumption of Nitrous Oxide. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Snider, D.M.; Schiff, S.L.; Spoelstra, J. 15N/14N and 18O/16O Stable Isotope Ratios of Nitrous Oxide Produced during Denitrification in Temperate Forest Soils. Geochim. Cosmochim. Acta 2009, 73, 877–888. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming Effects: Interactions between Living and Dead Organic Matter. Soil Biol. Biochem. 2010, 9, 1363–1371. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z.; Zhang, J.; Müller, C. C:N Ratio Is Not a Reliable Predictor of N2O Production in Acidic Soils after a 30-Day Artificial Manipulation. Sci. Total Environ. 2020, 725, 138427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, W.; Zhang, J.; Cai, Z. N2O Production Pathways Relate to Land Use Type in Acidic Soils in Subtropical China. J. Soils Sediments 2016, 17, 306–314. [Google Scholar] [CrossRef]
- Aliyu, G.; Luo, J.; Di, H.J.; Lindsey, S.; Liu, D.; Yuan, J.; Chen, Z.; Lin, Y.; He, T.; Zaman, M.; et al. Nitrous Oxide Emissions from China’s Croplands Based on Regional and Crop-Specific Emission Factors Deviate from IPCC 2006 Estimates. Sci. Total Environ. 2019, 669, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, S.; Fang, H.; Yu, G.; Dang, X.; Xu, M.; Wang, L.; Si, G.; Geng, J.; He, S. The Contrasting Effects of Deposited NH4+ and NO3− on Soil CO2, CH4 and N2O Fluxes in a Subtropical Plantation, Southern China. Ecol. Eng. 2015, 85, 317–327. [Google Scholar] [CrossRef]
- Röckmann, T.; Kaiser, J.; Brenninkmeijer, C.A.; Brand, W.A. Gas Chromatography/Isotope-ratio Mass Spectrometry Method for High-precision Position-dependent 15N and 18O Measurements of Atmospheric Nitrous Oxide. Rapid Commun. Mass Spectrom. 2003, 17, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Hirono, Y.; Yanai, Y.; Hattori, S.; Toyoda, S.; Yoshida, N. Isotopomer Analysis of Nitrous Oxide Accumulated in Soil Cultivated with Tea (Camellia Sinensis) in Shizuoka, Central Japan. Soil Biol. Biochem. 2014, 77, 276–291. [Google Scholar] [CrossRef]
- Koba, K.; Osaka, K.; Tobari, Y.; Toyoda, S.; Ohte, N.; Katsuyama, M.; Suzuki, N.; Itoh, M.; Yamagishi, H.; Kawasaki, M.; et al. Biogeochemistry of Nitrous Oxide in Groundwater in a Forested Ecosystem Elucidated by Nitrous Oxide Isotopomer Measurements. Geochim. Cosmochim. Acta 2009, 73, 3115–3133. [Google Scholar] [CrossRef]
- Chai, L.L.; Hernandez-Ramirez, G.; Dyck, M.; Pauly, D.; Kryzanowski, L.; Middleton, A.; Powers, L.-A.; Lohstraeter, G.; Werk, D. Can Fertigation Reduce Nitrous Oxide Emissions from Wheat and Canola Fields? Sci. Total Environ. 2020, 745, 141014. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO Emission from Agricultural Fields and Soils under Natural Vegetation: Summarizing Available Measurement Data and Modeling of Global Annual Emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Fang, K.; Yi, X.; Dai, W.; Gao, H.; Cao, L. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. Int. J. Environ. Res. Public. Health 2019, 16, 1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.B.; Xu, Z.H.; Cai, Z.C.; Reverchon, F. Review of Denitrification in Tropical and Subtropical Soils of Terrestrial Ecosystems. J. Soils Sediments 2013, 13, 699–710. [Google Scholar] [CrossRef]
- Buchen, C.; Lewicka-Szczebak, D.; Flessa, H.; Well, R. Estimating N2O Processes during Grassland Renewal and Grassland Conversion to Maize Cropping Using N2O Isotopocules. Rapid Commun. Mass Spectrom. 2018, 32, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, W.; Zhong, W.; Cai, Z. The Substrate Is an Important Factor in Controlling the Significance of Heterotrophic Nitrification in Acidic Forest Soils. Soil Biol. Biochem. 2014, 76, 143–148. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N 2 O and NO from Fertilized Fields: Summary of Available Measurement Data: Summary of NO and N2O Measurement Data. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Daly, E.J.; Hernandez-Ramirez, G. Sources and Priming of Soil N2O and CO2 Production: Nitrogen and Simulated Exudate Additions. Soil Biol. Biochem. 2020, 149, 107942. [Google Scholar] [CrossRef]
- Liu, X.-J.A. Labile Carbon Input Determines the Direction and Magnitude of the Priming Effect. Appl. Soil Ecol. 2017, 109, 7–13. [Google Scholar] [CrossRef] [Green Version]
Soil Type | pH | TN (g N kg−1) | SOC (g C kg−1) | C/N Ratio | NH4-N (mg kg−1) | NO3-N (mg kg−1) |
---|---|---|---|---|---|---|
Agricultural | 4.8 ± 0.1 | 0.8 ± 0.0 | 9.5 ± 0.2 | 11.5 ± 0.6 | 17.1 ± 1.5 | 60.7 ± 2.9 |
Forest | 4.6 ± 0.2 | 1.0 ± 0.1 | 21.2 ± 4.4 | 21.5 ± 3.1 | 6.3 ± 1.4 | 13.8 ± 5.0 |
NH4NO3 Application (mg N kg−1 Soil) | N2O Flux (μg kg−1 d−1) | δ15Nbulk (‰) | δ18O (‰) | SP (‰) |
---|---|---|---|---|
0 | 3.0 ± 0.2a | −26.4 ± 1.8d | 39.0 ± 1.1b | 24.9 ± 1.3a |
20 | 3.7 ± 0.2b | −32.2 ± 0.9c | 37.8 ± 0.2a | 26.1 ± 2.8ab |
40 | 4.7 ± 0.3c | −35.2 ± 1.8b | 38.2 ± 0.5ab | 26.6 ± 0.4ab |
80 | 5.5 ± 0.8d | −39.2 ± 1.0a | 38.1 ± 0.4ab | 26.4 ± 1.3ab |
160 | 6.0 ± 0.5d | −38.1 ± 1.4a | 39.0 ± 0.4bc | 28.0 ± 1.1b |
NH4NO3 Application (mg N kg−1 Soil) | N2O Flux (μg kg−1 d−1) | δ15Nbulk (‰) | δ18O (‰) | SP (‰) |
---|---|---|---|---|
0 | 1.8 ± 0.1a | −14.6 ± 0.6a | 34.5 ± 0.8a | 15.0 ± 1.4a |
20 | 1.9 ± 0.2ac | −14.0 ± 1.2ab | 35.5 ± 1.1ab | 15.0 ± 2.4a |
40 | 2.0 ± 0.2bc | −12.3 ± 0.5bc | 35.8 ± 0.5b | 14.3 ± 2.4a |
80 | 2.0 ± 0.2c | −12.0 ± 1.4c | 36.5 ± 0.6cd | 18.0 ± 1.8b |
160 | 2.0 ± 0.1c | −10.7 ± 0.8c | 37.3 ± 0.3d | 18.4 ± 1.1b |
Soil Type | NH4NO3 Application (mg N kg−1 soil) | Case 1 | Case 2 | Case 3 | Case 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Contribution to N2O Production (%) | Contribution to N2O Production (%) | Contribution to N2O Production (%) | Contribution to N2O Production (%) | ||||||
Bacterial Nitrification | Nitrifier Denitrification | Bacterial Nitrification | Denitrifier Denitrification | Fungal Denitrification | Nitrifier Denitrification | Fungal Denitrification | Denitrifier Denitrification | ||
Agricultural soil | 0 | 59 (5) | 41 (6) | 70 (6) | 30 (5) | 54 (7) | 46 (5) | 61 (8) | 39 (6) |
20 | 61 (6) | 39 (3) | 76 (6) | 24 (5) | 73 (6) | 27 (5) | 85 (8) | 15 (4) | |
40 | 73 (7) | 27 (5) | 83 (8) | 17 (4) | 77 (8) | 23 (6) | 93 (7) | 7(4) | |
80 | 78 (7) | 22 (6) | 88 (8) | 13 (6) | 100 | 0 | 100 (6) | 0 (6) | |
160 | 67 (4) | 33 (4) | 70 (5) | 30 (8) | 55 (7) | 45 (7) | 65 (8) | 35 (7) | |
Forest soil | 0 | 0 | 100 | 29 (5) | 71 (7) | 0 | 100 | 42 (7) | 58 (7) |
20 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | |
40 | 0 | 100 | 0 | 100 | 0 | 100 | 1 (5) | 99 (6) | |
80 | 0 | 100 | 10 (5) | 90 (8) | 0 | 100 | 100 | 0 | |
160 | 0 | 100 | 12 (6) | 88 (8) | 0 | 100 | 18 (4) | 82 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wen, T.; Hu, Y.; Zhang, J.; Cai, Z. Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning? Int. J. Environ. Res. Public Health 2021, 18, 5024. https://doi.org/10.3390/ijerph18095024
Zhang P, Wen T, Hu Y, Zhang J, Cai Z. Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning? International Journal of Environmental Research and Public Health. 2021; 18(9):5024. https://doi.org/10.3390/ijerph18095024
Chicago/Turabian StyleZhang, Peiyi, Teng Wen, Yangmei Hu, Jinbo Zhang, and Zucong Cai. 2021. "Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning?" International Journal of Environmental Research and Public Health 18, no. 9: 5024. https://doi.org/10.3390/ijerph18095024
APA StyleZhang, P., Wen, T., Hu, Y., Zhang, J., & Cai, Z. (2021). Can N Fertilizer Addition Affect N2O Isotopocule Signatures for Soil N2O Source Partitioning? International Journal of Environmental Research and Public Health, 18(9), 5024. https://doi.org/10.3390/ijerph18095024