The Role of Executive Function in the Effectiveness of Multi-Component Interventions Targeting Physical Activity Behavior in Office Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Randomization and Interventions
2.4. Data Collection and Measurements
2.5. Outcomes: Device-Measured PA and Sedentary Behavior
2.6. Executive Function
2.7. Assessments of JDC Model
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. The Effect of JDC Categories on the Effectiveness of Interventions
3.3. The Effect of EF on the Effectiveness of Interventions
3.4. The Joint Effect of EF and the JDC Categories on Effectiveness of Intervention
3.5. Additional Analysis
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Studies
4.3. Possible Explanations and Mechanisms
4.4. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451. [Google Scholar] [CrossRef]
- Buckley, J.; Cohen, J.D.; Kramer, A.F.; McAuley, E.; Mullen, S.P. Cognitive control in the self-regulation of physical activity and sedentary behavior. Front. Hum. Neurosci. 2014, 8, 747. [Google Scholar] [CrossRef] [Green Version]
- McAuley, E.; Mullen, S.P.; Szabo, A.N.; White, S.M.; Wójcicki, T.R.; Mailey, E.L.; Gothe, N.P.; Olson, E.A.; Voss, M.; Erickson, K.; et al. Self-regulatory processes and exercise adherence in older adults: Executive function and self-efficacy effects. Am. J. Prev. Med. 2011, 41, 284–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, M.; McMinn, D.; Allan, J.L. A Bidirectional Relationship between Physical Activity and Executive Function in Older Adults. Front. Hum. Neurosci. 2015, 8, 1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.L.; McMinn, D.; Daly, M. A Bidirectional Relationship between Executive Function and Health Behavior: Evidence, Implications, and Future Directions. Front. Neurosci. 2016, 10, 386. [Google Scholar] [CrossRef]
- Merz, E.C.; Landry, S.H.; Montroy, J.J.; Williams, J.M. Bidirectional Associations Between Parental Responsiveness and Executive Function During Early Childhood. Soc. Dev. 2017, 26, 591–609. [Google Scholar] [CrossRef]
- Danquah, I.H.; Kloster, S.; Holtermann, A.; Aadahl, M.; Bauman, A.; Ersbøll, A.K.; Tolstrup, J.S. Take a Stand!—A multi-component intervention aimed at reducing sitting time among office workers—A cluster randomized trial. Int. J. Epidemiol. 2017, 46, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Aittasalo, M.; Miilunpalo, S.; Suni, J. The Effectiveness of Physical Activity Counseling in a Work-Site Setting: A Randomized, Controlled Trial. Patient Educ. Couns. 2004, 55, 193–202. [Google Scholar] [CrossRef]
- Edwardson, C.L.; Yates, T.; Biddle, S.J.H.; Davies, M.J.; Dunstan, D.W.; Esliger, D.W.; Gray, L.J.; Jackson, B.; O’Connell, S.E.; Waheed, G.; et al. Effectiveness of the Stand More at (SMArT) Work Intervention: Cluster Randomised Controlled Trial. BMJ 2018, 363, k3870. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, S.; Stephenson, D.; Clow, A. The Effects of a Physical Activity Intervention on Employees in Small and Medium Enterprises: A Mixed Methods Study. Work 2013, 46, 39–49. [Google Scholar] [CrossRef]
- Healy, G.N.; Eakin, E.G.; Lamontagne, A.D.; Owen, N.; Winkler, E.A.; Wiesner, G.; Gunning, L.; Neuhaus, M.; Lawler, S.; Fjeldsoe, B.S.; et al. Reducing sitting time in office workers: Short-term efficacy of a multicomponent intervention. Prev. Med. 2013, 57, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Urda, J.L.; Lynn, J.S.; Gorman, A.; Larouere, B. Effects of a Minimal Workplace Intervention to Reduce Sedentary Behaviors and Improve Perceived Wellness in Middle-Aged Women Office Workers. J. Phys. Act. Health 2016, 13, 838–844. [Google Scholar] [CrossRef]
- Peterman, J.E.; Healy, G.N.; Winkler, E.A.; Moodie, M.; Eakin, E.G.; Lawler, S.P.; Owen, N.; Dunstan, D.W.; LaMontagne, A.D. A cluster randomized controlled trial to reduce office workers’ sitting time: Effect on productivity outcomes. Scand. J. Work Environ. Health 2019, 45, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Bakker, A.B.; de Vries, J.D. Job Demands—Resources Theory and Self-Regulation: New Explanations and Remedies for Job Burnout. Anxiety Stress Coping 2021, 34, 1–21. [Google Scholar] [CrossRef]
- Karasek, R.A. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Theorell, T.; Karasek, R.A. Current Issues Relating to Psychosocial Job Strain and Cardiovascular Disease Research. J. Occup. Health Psychol. 1996, 1, 9. [Google Scholar] [CrossRef]
- Nooijen, C.F.J.; Blom, V.; Ekblom, Ö.; Ekblom, M.M.; Kallings, L.V. Improving Office Workers’ Mental Health and Cognition: A 3—Arm Cluster Randomized Controlled Trial Targeting Physical Activity and Sedentary Behavior in Multi—Component Inter-ventions. BMC Public Health 2019, 19, 266. [Google Scholar] [CrossRef] [Green Version]
- Nooijen, C.F.J.; Blom, V.; Ekblom, Ö.; Heiland, E.G.; Larisch, L.-M.; Bojsen-Møller, E.; Ekblom, M.M.; Kallings, L.V. The Effectiveness of Multi-Component Interventions Targeting Physical Activity or Sedentary Behaviour amongst Office Workers: A Three—Arm Cluster Randomised Controlled Trial. BMC Public Health 2020, 20, 1329. [Google Scholar] [CrossRef]
- Kivimäki, M.; Nyberg, S.T.; Batty, G.D.; Fransson, E.I.; Heikkilä, K.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Casini, A.; et al. Job Strain as a Risk Factor for Coronary Heart Disease: A Collaborative Meta-Analysis of Individual Participant Data. Lancet 2012, 380, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
- Elovainio, M.; Feme, J.E.; Singh-Manoux, A.; Gimeno, D.; De Vogli, R.; Shipley, M.J.; Vahtera, J.; Brunner, E.J.; Marmot, M.G.; Kivimäki, M. Cumulative Exposure to High-Strain and Active Jobs as Predictors of Cognitive Function: The Whitehall II Study. Occup. Environ. Med. 2009, 66, 32–37. [Google Scholar] [CrossRef]
- Bojsen-Møller, E.; Boraxbekk, C.J.; Ekblom, Ö.; Blom, V.; Ekblom, M.M. Relationships between Physical Activity, Sedentary Behaviour and Cognitive Functions in Office Workers. Int. J. Environ. Res. Public Health 2019, 16, 4721. [Google Scholar] [CrossRef] [Green Version]
- Fridolfsson, J.; Börjesson, M.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D. Effects of Fre-quency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors 2019, 19, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larisch, L.-M.; Bojsen-Møller, E.; Nooijen, C.F.J.; Blom, V.; Ekblom, M.; Ekblom, Ö.; Arvidsson, D.; Fridolfsson, J.; Hallman, D.M.; Mathiassen, S.E.; et al. Effects of Two Randomized and Controlled Multi-Component Interventions Focusing On 24-Hour Movement Behavior among Office Workers: A Compositional Data Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4191. [Google Scholar] [CrossRef] [PubMed]
- Nooijen, C.F.J.; Kallings, L.V.; Blom, V.; Ekblom, Ö.; Forsell, Y.; Ekblom, M.M. Common Perceived Barriers and Facilitators for Reducing Sedentary Behaviour among Office Workers. Int. J. Environ. Res. Public Health 2018, 15, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tombaugh, T.N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.C.; Pan, K.-Y.; Magnusson Hanson, L.L.; Fastbom, J.; Westerlund, H.; Wang, H.X. Psychosocial Job Strain and Polypharmacy: A National Cohort Study. Scand. J. Work, Environ. Health 2020, 46, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Pelfrene, E.; Vlerick, P.; Mak, R.P.; De Smet, P.; Kornitzer, M.; De Backer, G. Scale Reliability and Validity of the Karasek’ Job Demand-Control-Support Model in the Belstress Study. Work Stress 2001, 15, 297–313. [Google Scholar] [CrossRef]
- Fransson, E.I.; Nyberg, S.T.; Heikkilä, K.; Alfredsson, L.; Bacquer, D.D.; Batty, G.D.; Bonenfant, S.; Casini, A.; Clays, E.; Goldberg, M.; et al. Comparison of Alternative Versions of the Job Demand-Control Scales in 17 European Cohort Studies: The IPD-Work Consortium. BMC Public Health 2012, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Chungkham, H.S.; Ingre, M.; Karasek, R.; Westerlund, H.; Theorell, T. Factor Structure and Longitudinal Measurement In-variance of the Demand Control Support Model: An Evidence from the Swedish Longitudinal Occupational Survey of Health (SLOSH). PLoS ONE 2013, 8, e70541. [Google Scholar] [CrossRef]
- Nyberg, S.T.; Fransson, E.I.; Heikkilä, K.; Alfredsson, L.; Casini, A.; Clays, E.; De Bacquer, D.; Dragano, N.; Erbel, R.; Ferrie, J.E.; et al. Job strain and cardiovascular disease risk factors: Meta-analysis of individual-participant data from 47,000 men and women. PLoS ONE 2013, 8, e67323. [Google Scholar] [CrossRef] [Green Version]
- Fransson, E.I.; Heikkilä, K.; Nyberg, S.T.; Zins, M.; Westerlund, H.; Westerholm, P.; Väänänen, A.; Virtanen, M.; Vahtera, J.; Theorell, T.; et al. Job Strain as a Risk Factor for Leisure-Time Physical Inactivity: An Individual-Participant Meta-Analysis of up to 170,000 Men and Women. Am. J. Epidemiol. 2012, 176, 1078–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Martínez-Hortelano, J.A.; Martínez-Vizcaíno, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Brasure, M.; Desai, P.; Davila, H.; Nelson, V.A.; Calvert, C.; Jutkowitz, E.; Butler, M.; Fink, H.A.; Ratner, E.; Hemmy, L.S.; et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia a Systematic Review. Ann. Intern. Med. 2018, 168, 30–38. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242. [Google Scholar] [CrossRef]
- Ratey, J.J.; Loehr, J.E. The Positive Impact of Physical Activity on Cognition during Adulthood: A Review of Underlying Mechanisms, Evidence and Recommendations. Rev. Neurosci. 2011, 22, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, L.H.P.; Milberg, W.P.; Lipsitz, L.A.; Scherder, E.J.A.; Leveille, S.G. Physical Activity and Executive Function in Aging: The MOBILIZE Boston Study. J. Am. Geriatr. Soc. 2009, 57, 1750–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stults-Kolehmainen, M.A.; Sinha, R. The Effects of Stress on Physical Activity and Exercise. Sports Med. 2014, 44, 81–121. [Google Scholar] [CrossRef]
- Griep, R.H.; Nobre, A.A.; Alves, M.G.D.M.; Da Fonseca, M.D.J.M.; Cardoso, L.D.O.; Giatti, L.; Melo, E.C.P.; Toivanen, S.; Chor, D. Job Strain and Unhealthy Lifestyle: Results from the Baseline Cohort Study, Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). BMC Public Health 2015, 15, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, K.; Ekblom, Ö.; Kallings, L.V.; Ekblom, M.; Blom, V. Job Demand-Control-Support Model as Related to Objectively Measured Physical Activity and Sedentary Time in Working Women and Men. Int. J. Environ. Res. Public Health 2019, 16, 3370. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.A.; Fong, G.T.; Epp, L.J.; Elias, L.J. Executive Function Moderates the Intention-Behavior Link for Physical Activity and Dietary Behavior. Psychol. Health 2008, 23, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mulé, E.; Cockburn, B.S. This Job Is (Literally) Killing Me: A Moderated-Mediated Model Linking Work Characteristics to Mortality. J. Appl. Psychol. 2021, 106, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Hellerstedt, W.L.; Jeffery, R.W. The Association of Job Strain and Health Behaviours in Men and Women. Int. J. Epidemiol. 1997, 26, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Duration | Performance | Break Period | |
---|---|---|---|
Session 1 | 60 min | Face-to-face individual session | 1 week after baseline data collection |
Session 2 | 45 min | Face-to-face individual session | 1–2 weeks after session 1 |
Session 3 | 90 min | Receiving individual feedbacks Group session | 6–9 weeks after session 1 |
Session 4 | 45 min | Face-to-face individual session | 13–14 weeks after session 1 |
Session 5 | 90 min | Group session | 23 weeks after session 1 |
Control Group (n = 90) | iPA Group (n = 78) | iSED Group (n = 77) | p-Value | |
---|---|---|---|---|
Age (year), Mean (SD) | 44.27 (7.76) | 40.69 (8.80) | 40.39 (8.72) | 0.004 |
Female, n (%) | 69 (78.67) | 61 (78.21) | 49 (63.64) | 0.077 |
Education (year), Mean (SD) a | 14.81 (2.03) | 15.29 (2.06) | 14.45 (1.94) | 0.037 |
Fitness level (mL.kg−1.min−1), Mean (SD) | 36.17 (7.82) | 36.82 (7.23) | 38.90 (7.39) | 0.055 |
Job demands, mean (SD) a | ||||
Low | 52 (59.09) | 34 (43.59) | 35 (47.95) | |
High | 36 (40.91) | 44 (56.41) | 38 (52.05) | 0.118 |
Job control, mean (SD) a | ||||
Low | 43 (52.44) | 42 (55.26) | 47 (62.67) | |
High | 39 (47.56) | 34 (44.74) | 28 (37.33) | 0.415 |
Job Demands–Control categories, n (%) | ||||
Low-strain jobs | 26 (32.10) | 16 (21.05) | 11 (14.86) | |
Passive-strain jobs | 22 (27.16) | 17 (22.37) | 25 (33.78) | |
Active jobs | 12 (14.81) | 18 (23.68) | 16 (21.62) | |
High-strain jobs | 21 (25.93) | 25 (32.89) | 22 (29.73) | 0.156 |
Executive function, Mean (SD) | −0.04 (0.87) | 0.00 (0.63) | 0.07 (0.73) | 0.644 |
Proportion of time spent on physical activity behaviors | ||||
Sleep (%) | 32.02 (2.84) | 31.86 (2.70) | 31.43 (3.25) | 0.418 |
Sedentary time (%) | 53.11 (3.81) | 53.18 (3.76) | 53.85 (3.77) | 0.390 |
LIPA (%) | 7.44 (1.72) | 7.43 (1.65) | 7.38 (1.66) | 0.972 |
MPA (%) | 6.72 (1.66) | 6.81 (1.63) | 6.65 (1.78) | 0.75 |
VPA (%) | 0.55 (0.49) | 0.54 (0.43) | 0.51 (0.39) | 0.866 |
VVPA (%) | 0.17 (0.16) | 0.18 (0.16) | 0.17 (0.12) | 0.7433 |
Sleep % | Sedentary Time % | LIPA % | MPA % | VPA % | VVPA % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β-coefficient (95% CI) | p-value | β-coefficient (95% CI) | p-value | β-coefficient (95% CI) | p-value | β-coefficient (95% CI) | p-value | β-coefficient (95% CI) | p-value | β-coefficient (95% CI) | p-value | |
EF Function × Time × Int | ||||||||||||
EF, z-score | ||||||||||||
iPA × Time × EF | 0.35 (−0.96, 1.65) | 0.594 | −0.30 (−1.90, 1.31) | 0.718 | 0.03 (−0.65, 0.71) | 0.937 | −0.02 (−0.71, 0.68) | 0.961 | −0.05 (−0.23, 0.13) | 0.606 | −0.02 (−0.09, 0.05) | 0.614 |
iSED × Time × EF | 1.52 (−0.01, 3.06) | 0.052 | −1.61 (−3.50, 0.28) | 0.095 | 0.04 (−0.77, 0.85) | 0.929 | −0.17 (−0.99, 0.65) | 0.686 | 0.19 (−0.02, 0.40) | 0.083 | 0.01 (−0.07, 0.09) | 0.883 |
Binary of EF | ||||||||||||
iPA × Time × EF Top median | 1.09 (−0.82, 3.00) | 0.264 | −0.16 (−2.53, 2.21) | 0.894 | −0.49 (−1.49, 0.52) | 0.342 | −0.40 (−1.43, 0.62) | 0.442 | −0.03 (−0.29, 0.24) | 0.834 | −0.01 (−0.11, 0.09) | 0.838 |
iSED × Time × EF Top median | 3.33 (1.11, 5.55) | 0.003 | −2.76 (−5.51, −0.01) | 0.049 | −0.54 (−1.71, 0.62) | 0.362 | −0.28 (−1.47, 0.92) | 0.650 | 0.25 (−0.06, 0.56) | 0.119 | −0.00 (−0.12, 0.12) | 0.981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Blom, V.; Nooijen, C.F.J.; Kallings, L.V.; Ekblom, Ö.; Ekblom, M.M. The Role of Executive Function in the Effectiveness of Multi-Component Interventions Targeting Physical Activity Behavior in Office Workers. Int. J. Environ. Res. Public Health 2022, 19, 266. https://doi.org/10.3390/ijerph19010266
Wang R, Blom V, Nooijen CFJ, Kallings LV, Ekblom Ö, Ekblom MM. The Role of Executive Function in the Effectiveness of Multi-Component Interventions Targeting Physical Activity Behavior in Office Workers. International Journal of Environmental Research and Public Health. 2022; 19(1):266. https://doi.org/10.3390/ijerph19010266
Chicago/Turabian StyleWang, Rui, Victoria Blom, Carla F. J. Nooijen, Lena V. Kallings, Örjan Ekblom, and Maria M. Ekblom. 2022. "The Role of Executive Function in the Effectiveness of Multi-Component Interventions Targeting Physical Activity Behavior in Office Workers" International Journal of Environmental Research and Public Health 19, no. 1: 266. https://doi.org/10.3390/ijerph19010266
APA StyleWang, R., Blom, V., Nooijen, C. F. J., Kallings, L. V., Ekblom, Ö., & Ekblom, M. M. (2022). The Role of Executive Function in the Effectiveness of Multi-Component Interventions Targeting Physical Activity Behavior in Office Workers. International Journal of Environmental Research and Public Health, 19(1), 266. https://doi.org/10.3390/ijerph19010266