NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Study Design and Study Population
2.3. Study Timeline Overview and Progress
2.4. Data Management
2.5. Study-Specific Questionnaires
2.6. Psychological Evaluation
2.7. Behavioural Tasks
2.8. Neuroimaging
2.9. Air Pollution Exposure Assessment
2.10. Planned Analyses
- Structural brain measures
- Fractional anisotropy
- Brain measures of inhibitory and attentional functions assessed with task fMRI
- Resting state connectivity
- Measures of attention assessed by behavioural tasks
- ADHD and other externalizing behaviours
- IQ
3. Conclusions
4. Challenges
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCD | Adolescent Brain Child Development study |
ACC | Anterior cingulate cortex |
ADHD | Attention deficit hyperactivity disorder |
ANT | Attention network test |
ASD | Autism spectrum disorder |
BDOT10k | Baza Danych Obiektów Topograficznych (Database of Topographic Objects) at accuracy level 1:10,000 |
BOLD | Blood oxygen level dependent effect |
CARIT | Conditioned approach response inhibition task |
CBCL | Child Behaviour Checklist |
CI | Confidence interval |
CPT | Continuous performance test |
DAG | Directed acyclic graph |
DPLFC | Dorsolateral prefrontal cortex |
DWI | Diffusion-weighted imaging |
EPI | Echo planar imaging |
EU | European Union |
FDR | False discovery rate |
FOV | Field of view |
GIS | Geographic information system |
fMRI | Functional magnetic resonance imaging |
HCP–D | Human Connectome Project–Development |
IQ | Intelligence quotient |
ISI | Interstimulus interval |
KRR | Kwestionariusz Relacji z Rodzeństwem W Okresie Adolescencji (Syblings Relationship Questionnaire) |
LUR | Land use regression model |
MP2RAGE | Magnetization-prepared 2 rapid acquisition gradient echo |
MRI | Magnetic resonance imaging |
NIH | National Institute of Health |
NO2 | Nitrogen dioxide |
NODDI | Neurite orientation dispersion and density |
PM | Particulate matter |
PM2.5 | Particulate matter with aerodynamic diameter <2.5 µm |
PM10 | Particulate matter with aerodynamic diameter <10 µm |
PU1 | Bateria diagnozy funkcji poznawczych PU1: Pamięć—uwaga—funkcje wykonawcze (Diagnostic Battery for Cognitive Functions Evaluation) |
rsfMRI | Resting-state functional magnetic resonance imaging |
SB5 | Stanford-Binet Intelligence Scales, 5th edition |
SES | Socio-economic status |
SMA | Supplementary motor area |
SOR | Skala Oceny Rodziny (Family Adaptation and Cohesion Evaluation Scales (FACES IV)) |
SPM | Statistical parametric mapping |
T1-w | T1-weighted |
T2-w | T2-weighted |
TI | Inversion time |
TR | Repetition time |
TE | Echo time |
WHO | World Health Organization |
YSR | Youth Self-Report |
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Preventing Disease through Health Environments: A Global Assessment of the Burden of Disease from Environmental Risks; Prüss-Üstün, A., Wolf, J., Corvalán, C., Bos, R., Neira, M., Eds.; World Health Organization: Paris, France, 2016; ISBN 978 92 4 156519 6. Available online: https://www.who.int/publications/i/item/9789241565196 (accessed on 23 December 2021).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef]
- Bowatte, G.; Lodge, C.; Lowe, A.J.; Erbas, B.; Perret, J.; Abramson, M.J.; Matheson, M.; Dharmage, S.C. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta-analysis of birth cohort studies. Allergy 2015, 70, 245–256. [Google Scholar] [CrossRef]
- Lu, C.; Norbäck, D.; Li, Y.; Deng, Q. Early-life exposure to air pollution and childhood allergic diseases: An update on the link and its implications. Expert Rev. Clin. Immunol. 2020, 16, 813–827. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.; Burnett, R.T.; Liu, J.; Liu, Y.; Liang, R.; Wang, W.; Qi, J.; Wang, L.; et al. Long-term Fine Particulate Matter Exposure and Nonaccidental and Cause-specific Mortality in a Large National Cohort of Chinese Men. Environ. Health Perspect. 2017, 125, 117002. [Google Scholar] [CrossRef]
- Yu, K.; Qiu, G.; Chan, K.H.; Lam, K.B.H.; Kurmi, O.P.; Bennett, D.A.; Yu, C.; Pan, A.; Lv, J.; Guo, Y.; et al. Association of Solid Fuel Use with Risk of Cardiovascular and All-Cause Mortality in Rural China. JAMA 2018, 319, 1351–1361. [Google Scholar] [CrossRef]
- Achilleos, S.; Kioumourtzoglou, M.-A.; Wu, C.-D.; Schwartz, J.D.; Koutrakis, P.; Papatheodorou, S.I. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 2017, 109, 89–100. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, W.; Zheng, X.; Sun, J.; Chen, L.; Deng, Q. Combined effects of ambient air pollution and home environmental factors on low birth weight. Chemosphere 2020, 240, 124836. [Google Scholar] [CrossRef] [PubMed]
- Myhre, O.; Låg, M.; Villanger, G.D.; Oftedal, B.; Øvrevik, J.; Holme, J.A.; Aase, H.; Paulsen, R.E.; Bal-Price, A.; Dirven, H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol. Appl. Pharm. 2018, 354, 196–214. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Torres-Jardón, R.; Kulesza, R.J.; Mansour, Y.; González-González, L.O.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Mukherjee, P.S. Alzheimer disease starts in childhood in polluted Metropolitan Mexico City. A major health crisis in progress. Environ. Res. 2020, 183, 109137. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, P.; Bai, L.; Cai, Z.; Li, R.; Yung, K.K.L. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer’s disease transgenic mice. Ecotoxicol. Environ. Saf. 2020, 192, 110325. [Google Scholar] [CrossRef]
- Cserbik, D.; Chen, J.-C.; McConnell, R.; Berhane, K.; Sowell, E.R.; Schwartz, J.; Hackman, D.; Kan, E.; Fan, C.C.; Herting, M.M. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ. Int. 2020, 143, 105933. [Google Scholar] [CrossRef]
- Nephew, B.C.; Nemeth, A.; Hudda, N.; Beamer, G.; Mann, P.; Petitto, J.; Cali, R.; Febo, M.; Kulkarni, P.; Poirier, G.; et al. Traffic-related particulate matter affects behavior, inflammation, and neural integrity in a developmental rodent model. Environ. Res. 2020, 183, 109242. [Google Scholar] [CrossRef]
- Araújo, J.E.; Jorge, S.; Santos, H.M.; Chiechi, A.; Galstyan, A.; Lodeiro, C.; Diniz, M.; Kleinman, M.T.; Ljubimova, J.Y.; Capelo, J.L. Proteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. Sci. Total Environ. 2019, 687, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, M.; Benevenuto, S.G.D.M.; Tomasini, P.P.; Yariwake, V.Y.; Alves, N.D.O.; Rahmeier, F.L.; Fernandes, M.D.C.; Moura, D.J.; Saldiva, P.H.N.; Veras, M.M. Concentrated ambient fine particulate matter (PM2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology 2020, 79, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Herting, M.M.; Younan, D.; Campbell, C.; Chen, J.-C. Outdoor Air Pollution and Brain Structure and Function from Across Childhood to Young Adulthood: A Methodological Review of Brain MRI Studies. Front. Public Health 2019, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Guxens, M.; Lubczyńska, M.J.; Muetzel, R.L.; Dalmau-Bueno, A.; Jaddoe, V.W.; Hoek, G.; van der Lugt, A.; Verhulst, F.C.; White, T.; Brunekreef, B.; et al. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol. Psychiatry 2018, 84, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortamais, M.; Pujol, J.; Martínez-Vilavella, G.; Fenoll, R.; Reynes, C.; Sabatier, R.; Rivas, I.; Forns, J.; Vilor-Tejedor, N.; Alemany, S.; et al. Effects of prenatal exposure to particulate matter air pollution on corpus callosum and behavioral problems in children. Environ. Res. 2019, 2019178, 108734. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J.; Martínez-Vilavella, G.; Macià, D.; Fenoll, R.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Blanco-Hinojo, L.; Capellades, J.; Querol, X.; et al. Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage 2016, 129, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Loftus, C.T.; Hazlehurst, M.F.; Szpiro, A.A.; Ni, Y.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Karr, C.J.; LeWinn, K.Z. Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate. Environ. Res. 2019, 176, 108505. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, M.; Janjani, H.; Yousefian, F.; Jamal, A.; Yunesian, M. Association between ambient gaseous and particulate air pollutants and attention deficit hyperactivity disorder (ADHD) in children; a systematic review. Environ. Res. 2019, 173, 135–156. [Google Scholar] [CrossRef]
- Annesi-Maesano, I. The air of Europe: Where are we going? Eur. Respir. Rev. 2017, 26, 170024. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, C.B.; Foltescu, V.; De Leeuw, F. Air quality status and trend in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur. 2021, 33, 28. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Raczyk, P.; Gruszecka-Kosowska, A. The Condition of Air Pollution in Krakow, Poland, in 2005–2020, with Health Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17, 6063. [Google Scholar] [CrossRef]
- Badyda, A.J.; Grellier, J.; Dąbrowiecki, P. Ambient PM2.5 Exposure and Mortality Due to Lung Cancer and Cardiopulmonary Diseases in Polish Cities. Adv. Exp. Med. Biol. 2017, 944, 9–17. [Google Scholar] [PubMed]
- Holnicki, P.; Tainio, M.; Kałuszko, A.; Nahorski, Z. Burden of Mortality and Disease Attributable to Multiple Air Pollutants in Warsaw, Poland. Int. J. Environ. Res. Public Health 2017, 14, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Environment Agency. European Air Quality Maps for 2018—PM10, PM2.5, Ozone, NO2 and NOx Spatial Estimates and Their Uncertainties (Eionet Report—ETC/ATNI 2020/10). Available online: https//www.eea.europa.eu/data-and-maps/data/interpolated-air-quality-data-2 (accessed on 23 December 2021).
- World Health Organization. International Classification of Diseases for Mortality and Morbidity Statistics (11th revision). Available online: https://icd.who.int/en (accessed on 23 December 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https//www.R-project.org (accessed on 17 December 2021).
- Dzhambov, A.; Hartig, T.; Markevych, I.; Tilov, B.; Dimitrova, D. Urban residential greenspace and mental health in youth: Different approaches to testing multiple pathways yield different conclusions. Environ. Res. 2018, 160, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Dzhambov, A.M.; Markevych, I.; Hartig, T.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Multiple pathways link urban green- and bluespace to mental health in young adults. Environ. Res. 2018, 166, 223–233. [Google Scholar] [CrossRef]
- Heinrich, J.; Brüske, I.; Cramer, C.; Hoffmann, U.; Schnappinger, M.; Schaaf, B.; Von Berg, A.; Berdel, D.; Krämer, U.; Lehmann, I.; et al. GINIplus and LISAplus—Design and selected results of two German birth cohorts about natural course of atopic diseases and their determinants. Allergol. Sel. 2017, 1, 85–95. [Google Scholar] [CrossRef]
- Kuiper, I.N.; Markevych, I.; Accordini, S.; Bertelsen, R.J.; Bråbäck, L.; Christensen, J.H.; Forsberg, B.; Halvorsen, T.; Heinrich, J.; Hertel, O.; et al. Associations of Preconception Exposure to Air Pollution and Greenness with Offspring Asthma and Hay Fever. Int. J. Environ. Res. Public Health 2020, 17, 5828. [Google Scholar] [CrossRef]
- Roid, G.H.; Jurek, P.; Olech, P.; Sajewicz-Radtke, U.; Radtke, B.M. Skale Inteligencji Stanford-Binet, Edycja Piąta. Podręcznik Diagnosty. In Stanford-Binet Intelligence Scales, 5th ed.; Diagnostic manual; Pracownia Testów Psychologicznych i Pedagogicznych (PTPiP): Gdańsk, Poland, 2017. [Google Scholar]
- Borkowska, A.R.; Sajewicz-Radtke, U.; Lipowska, M.; Kalka, D. Bateria diagnozy funkcji poznawczych PU1. Pamięć—uwaga—funkcje wykonawcze. In Diagnostic Battery for Cognitive Functions Evaluation: Memory—Attention—Executive Functions; Pracownia Testów Psychologicznych i Pedagogicznych (PTPiP): Gdańsk, Poland, 2015. [Google Scholar]
- Holmes, J.; Guy, J.; Kievit, R.A.; Bryant, A.; Mareva, S.; Team, C.; Gathercole, S.E. Cognitive dimensions of Learning in Children with Problems in Attention, Learning, and Memory. J. Educ. Psychology 2020, 113, 1454–1480. [Google Scholar] [CrossRef]
- Wrocławska-Warchał, E.; Wujcik, R. Conners 3—Questionnaires for ADHD Assessment; Western Psychological Services: Los Angeles, CA, USA, 2018. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Multicultural Understanding of Child and Adolescent Psychopathology: Implications for Mental Health Assessment; Guilford Press: New York, NY, USA, 2007. [Google Scholar]
- Wolańczyk, T. Zaburzenia Emocjonalne i Behawioralne u Dzieci i Młodzieży Szkolnej w Polsce; Rozprawa Habilitacyjna; Akademia Medyczna w Warszawie: Warsaw, Poland, 2002. [Google Scholar]
- Achenbach, T.M. The Achenbach System of Empirically Based Assessment (ASEBA): Development, Findings, Theory, and Applications; University of Vermont Research Center for Children, Youth, and Families: Burlington, VT, USA, 2009. [Google Scholar]
- Margasinski, A. The Polish Adaptation of FACES EV-SOR. Pol. J. Appl. Psychol. 2015, 13, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska-Walter, A.; Połomski, P.; Peplińska, A. Kwestionariusz Relacji z Rodzeństwem W Okresie Adolescencji [Questionnaire of Relationships with Siblings for Adolescents]; Pracownia Testów Psychologicznych i Pedagogicznych (PTPiP): Gdańsk, Poland, 2016. [Google Scholar]
- Rueda, M.R.; Fan, J.; McCandliss, B.D.; Halparin, J.D.; Gruber, D.B.; Lercari, L.P.; I Posner, M. Development of attentional networks in childhood. Neuropsychologia 2004, 42, 1029–1040. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Conners, C.K.; Sitarenios, G.; Ayearst, L.E. Conners’ Continuous Performance Test, 3rd ed.; Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2018; Available online: https://doi.org/10.1007/978-3-319-57111-9_1535 (accessed on 23 December 2021).
- Seidel, W.T.; Joschko, M. Evidence of difficulties in sustained attention in children with ADDH. J. Abnorm. Child Psychol. 1990, 18, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Conners, C.K.; Epstein, J.N.; Angold, A.; Klaric, J. Continuous performance test performance in a normative epidemiological sample. J. Abnorm. Child Psychol. 2003, 31, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Shaked, D.; Faulkner, L.M.D.; Tolle, K.; Wendell, C.R.; Waldstein, S.R.; Spencer, R.J. Reliability and validity of the Conners’ Continuous Performance Test. Appl. Neuropsychol. Adult 2020, 27, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.j.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.m.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef]
- Xu, J.; Moeller, S.; Auerbach, E.J.; Strupp, J.; Smith, S.M.; Feinberg, D.A.; Yacoub, E.; Uğurbil, K. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage 2013, 83, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Moeller, S.; Auerbach, E.; Strupp, J.; Smith, S.; Feinberg, D.A.; Yacoub, E.; Uğurbil, K. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 2010, 5, e15710. [Google Scholar]
- van der Kouwe, A.J.; Benner, T.; Salat, D.H.; Fischl, B. Brain morphometry with multiecho MPRAGE. NeuroImage 2008, 40, 559–569. [Google Scholar] [CrossRef] [Green Version]
- Glasser, M.F.; Van Essen, D.C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 2011, 31, 11597–11616. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, M.D.; Hess, A.; Reuter, M.; Meintjes, E.; Fischl, B.; van der Kouwe, A.J.W. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson Med. 2012, 68, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Marques, J.P.; Kober, T.; Krueger, G.; van der Zwaag, W.; Van de Moortele, P.-F.; Gruetter, R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 2010, 49, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Krienen, F.M.; Yeo, B.T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 2013, 16, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Modalities, modes, and models in functional neuroimaging. Science 2009, 326, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, S.M.; Livesey, D.J. The development of inhibitory control in preschool children: Effects of “executive skills” training. Dev. Psychobiol. 2000, 36, 161–174. [Google Scholar] [CrossRef]
- Eme, R.F. Sex differences in child-onset, life-course-persistent conduct disorder: A review of biological influences. Clin. Psychol. Rev. 2007, 27, 607–627. [Google Scholar] [CrossRef]
- Romer, D.; Betancourt, L.; Giannetta, J.M.; Brodsky, N.L.; Farah, M.; Hurt, H. Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents. Neuropsychologia 2009, 47, 2916–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somerville, L.H.; Bookheimer, S.Y.; Buckner, R.L.; Burgess, G.C.; Curtiss, S.W.; Dapretto, M.; Elam, J.S.; Gaffrey, M.S.; Harms, M.; Hodge, C.; et al. The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 2018, 183, 456–468. [Google Scholar] [CrossRef]
- Dale, A.M. Optimal experimental design for event-related fMRI. Hum. Brain Mapp. 1999, 8, 109–114. [Google Scholar] [CrossRef]
- Newman, S.D.; Hansen, M.T.; Gutierrez, A. Gutierrez. An fMRI Study of the Impact of Block Building and Board Games on Spatial Ability. Front. Psychol. 2016, 7, 1278. [Google Scholar] [CrossRef] [Green Version]
- De Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; et al. Development of land use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef]
- De Hoogh, K.; Chen, J.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe—Evaluation of spatiotemporal stability. Environ. Int. 2018, 120, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [Google Scholar] [CrossRef]
- Air Quality Portal. Chief Inspectorate of Environmental Protection. Available online: https//powietrze.gios.gov.pl/pjp/archives (accessed on 23 December 2021).
- Werner, M.; Kryza, M.; Wałaszek, K. Emission projections and limit values of air pollution concentration—A case study using the EMEP4PL model. Int. J. Environ. Pollut. 2019, 65, 164–176. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Wałaszek, K.; Vieno, M.; Dore, A.J. EMEP4PL and WRF-Chem—Evaluation of the Modelling Results. In Air Pollution Modeling and Its Application XXV: ITM 2016 Springer Proceedings in Complexity; Mensink, C., Kallos, G., Eds.; Springer: Cham, Germany, 2018; Available online: https://doi.org/10.1007/978-3-319-57645-9_18 (accessed on 23 December 2021).
- QGIS Development Team; QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 23 December 2021).
- Textor, J.B.; van der Zander, M.K. Gilthorpe, M. Liskiewicz; G.T.H. Ellison. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [PubMed] [Green Version]
Air Pollution Level | Population Size | |
---|---|---|
Large | Small | |
High | Kraków | Pszczyna |
Czechowice-Dziedzice | ||
Chrzanów | ||
Skawina | ||
Bochnia | ||
Medium | Częstochowa Jaworzno | Olkusz |
Żywiec | ||
Trzebinia | ||
Nowy Targ | ||
Kędzierzyn-Koźle | ||
Strzelce Opolskie | ||
Low | Bielsko-Biała | Zakopane |
Cieszyn | ||
Kłobuck |
Sequence | Matrix | Slices | FOV | % FOV Phase | Resolution (mm) | TR (ms) | TE (ms) | TI (ms) | Flip Angle (deg) | Parallel Imaging | Multi Band Acceleration | Phase Partial Fourier | Diffusion Directions | b-Values | Acquisition Time |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1-w | 256 × 256 | 176 | 256 × 256 | 100% | 1.0 × 1.0 × 1.0 | 2500 | 2.88 | 1060 | 8 | 2× | Off | Off | N/A | N/A | 06:09 |
T2-w | 256 × 256 | 176 | 256 × 256 | 100% | 1.0 × 1.0 × 1.0 | 3200 | 565 | N/A | Variable | 2× | Off | Off | N/A | N/A | 05:34 |
fMRI | 90 × 90 | 60 | 216 × 216 | 100% | 2.4 × 2.4 × 2.4 | 800 | 30 | N/A | 52 | Off | 6 | Off | N/A | N/A | 2 × 4.11 (task fMRI) 2 × 6.08 (rsfMRI) |
DWI | 104 × 104 | 72 | 210 × 210 | 100% | 2.0 × 2.0 × 2.0 | 3800 | 101 | N/A | 78 | Off | 3 | 6/8 | 117 | 0 (10 dirs) 500 (18-dirs) 1250 (36-dirs) 2500 (53-dirs) | 07:31 |
MP2RAGE | 256 × 256 | 176 | 256 × 256 | 100% | 1.0 × 1.0 × 1.0 | 5000 | 3 | 700 | 4 | 3x | Off | Off | N/A | N/A | 08:22 |
Type | Source | Main Indicators | Characteristics |
---|---|---|---|
Emissions | National Centre for Emissions Management [76], regional data from the voivodeship authorities, emission sector maps | Traffic emissions of air pollutants Residential emission of air pollutants | Daily data available, monthly/annual means incorporated in LUR |
Land use | Corine Land Cover | Forest and wooded area Residential area Surface water Vegetation and agricultural area Area under roads, rail, and airport roads Unused land, landfill, excavation Remaining, undeveloped area | Annual data collection years: 2006, 2012, 2018 |
Road data | Database of Topographic Objects, 1:10, 000 scale, nationwide (BDOT10k) | Type of road (e.g., highway, expressway, main road, etc.) Number of traffic lanes within one road | Data collection from years 2019 to 2020 |
Air quality | Atmospheric dispersion models [74] | Estimates from the dispersion modelling | Hourly data available, monthly/yearly means incorporated in LUR |
Meteorological conditions | Institute of Meteorology and Water Management National Research Institute | Temperature Wind speed and direction Precipitation Relative humidity Atmospheric pressure | Hourly data available, monthly/yearly means incorporated in LUR |
Tool | Main Outcomes |
---|---|
Neuroimaging | |
T1-w and T2-w | Volume of subcortical structures |
Cortical grey matter thickness and surface | |
DWI | Fractional Anisotropy in regions of interest (tractography) |
NODDI | |
Task fMRI | BOLD activation in the NoGo > Go contrast in the CARIT |
Amplitude of BOLD signal change between task-related and default-mode-network activations | |
Resting-state connectivity | Functional connectivity in regions of interest |
T1-w, T2-w, and MP2RAGE | Cortical myelin content |
Behavioural tasks | |
CPT and CARIT | Omission errors |
Commission errors | |
Mean reaction time | |
Standard deviation of reaction time | |
ANT | Mean reaction time |
Alerting network | |
Orienting network | |
Executive network | |
Psychological evaluation | |
CBCL and YSR | Total problems |
Internalizing problems | |
Externalizing problems | |
Withdrawn/depressed | |
Somatic complaints | |
Anxious/depressed | |
Social problems | |
Thought problems | |
Attention problems | |
Rule-breaking behaviour | |
Aggressive behaviour | |
SB5 | General IQ |
Verbal IQ | |
Non-verbal IQ | |
PU1 | Selective attention |
Memory–phonological loop | |
Visual–spatial memory | |
Executive functions | |
Opinions of assessing psychologists, Conners 3, PU1, SB5, CBCL, and validation | ADHD diagnosis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markevych, I.; Orlov, N.; Grellier, J.; Kaczmarek-Majer, K.; Lipowska, M.; Sitnik-Warchulska, K.; Mysak, Y.; Baumbach, C.; Wierzba-Łukaszyk, M.; Soomro, M.H.; et al. NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol. Int. J. Environ. Res. Public Health 2022, 19, 310. https://doi.org/10.3390/ijerph19010310
Markevych I, Orlov N, Grellier J, Kaczmarek-Majer K, Lipowska M, Sitnik-Warchulska K, Mysak Y, Baumbach C, Wierzba-Łukaszyk M, Soomro MH, et al. NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol. International Journal of Environmental Research and Public Health. 2022; 19(1):310. https://doi.org/10.3390/ijerph19010310
Chicago/Turabian StyleMarkevych, Iana, Natasza Orlov, James Grellier, Katarzyna Kaczmarek-Majer, Małgorzata Lipowska, Katarzyna Sitnik-Warchulska, Yarema Mysak, Clemens Baumbach, Maja Wierzba-Łukaszyk, Munawar Hussain Soomro, and et al. 2022. "NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol" International Journal of Environmental Research and Public Health 19, no. 1: 310. https://doi.org/10.3390/ijerph19010310
APA StyleMarkevych, I., Orlov, N., Grellier, J., Kaczmarek-Majer, K., Lipowska, M., Sitnik-Warchulska, K., Mysak, Y., Baumbach, C., Wierzba-Łukaszyk, M., Soomro, M. H., Compa, M., Izydorczyk, B., Skotak, K., Degórska, A., Bratkowski, J., Kossowski, B., Domagalik, A., & Szwed, M. (2022). NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol. International Journal of Environmental Research and Public Health, 19(1), 310. https://doi.org/10.3390/ijerph19010310