Difficulties in Establishing “Truth” Conditions in the Assessment of Addictive Smartphone Use in Young Adults
Abstract
:1. Introduction
1.1. One Construct, Many Tools
1.2. The Smartphone Addiction Scale
1.3. The SAS-SV and Concurrent Outcomes
1.3.1. Psychological Distress: Anxiety, Depression, Stress
1.3.2. Screen Time and Social Media
2. Materials and Methods
2.1. Participants and Procedure
2.2. Instruments
- Psychological distress. Anxiety, depression, and stress through the DASS-21 scale [57]; following the authors’ manual [58]. It is a self-reporting scale with 21 items, seven per category: depression (e.g., loss of self-esteem and low mood), anxiety (e.g., fear anticipation of negative outcomes), and stress (e.g., state of hyper-arousal and low-frustration tolerance). Each item is measured with a 4-point severity/frequency rating scale from 0 (‘did not apply to me at all’) to 3 (‘applied to me very much, or most of the time’), with higher scores representing more severe levels of psychological distress in the last week. The original Cronbach Alphas are 0.91, 0.84 and 0.90 for the subscales of depression, anxiety, and stress, respectively. We flagged respondents with severe or extremely severe scores in each subscale: anxiety (a value of 8 or more), depression (11 or more), and stress (13 or more).
2.3. Analysis Plan
- Reliability: evaluates internal consistency, i.e., the degree to which the items that make up a scale behave consistently with respect to the construct being evaluated. This is evaluated using the overall Cronbach Alpha of SAS-SV in each sample.
- Concurrent validity (criterion-related): refers to the extent to which a scale correlates with indicators (criteria) that are theoretically expected to be associated with it. We tested Pearson’s correlations between the SAS-SV and four external criteria: anxiety, depression, stress, and excessive social media.
- Cutoff point calculation: a process that involves the following sub-steps:
- Determine a ‘true condition’, a criterion capable of identifying ‘addicted’ smartphone users. The gold standard would be to carry out a clinical evaluation of each individual. However, this is expensive and seldom done (in the case of the SAS-SV and the nine language versions presented in Table 1, only the original scale by Kwon and colleagues used clinical evaluations to determine true smartphone ‘addiction’). Lacking a clinical evaluation, researchers use external criteria which are expected to be associated with the scale, to distinguish between truly ‘addicted’ individuals (what we will call ‘problematic profiles’ below). These external criteria include, for example, addiction symptoms from the DSM-IV [61,62], lack of self-control [63], subjective feeling of smartphone addiction [32] symptoms of depression and anxiety [21,64], or correlation with other internet addiction scales [65].
- Compare SAS-SV scores with the true condition above, calculating true positives (TP: ‘addicted’ individuals who were correctly classified as such), false positives (FP: people classified ‘addicted’ by the SAS-SV who are not truly ‘addicts’), true negatives (TN: subjects who are not ‘addicted’ and were correctly classified as such), and false negatives (FN: ‘addicts’ who are classified as not having any problem with their smartphone use). From these values, one calculates the sensitivity [TP/(TP + FN)] and the specificity [TN/(TN + FP)] of the SAS-SV scale.
- Calculate a cutoff point: using receiver operator characteristics (ROC) curve methodology, look for the cutoff value that maximizes the area under this (ROC) curve (AUC). This is given by the highest Youden Index among all possible combinations of true conditions and cutoff points.
3. Results
3.1. Reliability and Concurrent Validity
3.2. Difficulties in Establishing a Cutoff Point Points for Each Sample
- In Ecuador, if we determined the true condition with ‘social media’ as the only criterion (individuals using it for longer than 4 h per day), the statistically ideal cutoff point would be 21 (out of 60). This would lead to the conclusion that 69% of Ecuadorians are ‘addicted’ to their smartphone.
- In Venezuela, if we determined the true condition as those with severe symptoms of anxiety and depression, who also use social media more than 4 h a day, the statistically ideal cutoff point would be 45. We would conclude that only 7.8% of Venezuelans are ‘addicted’ to the smartphone.
3.3. Two Possible Rules to Choose Cutoff Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
English | Spanish | |
---|---|---|
1 | Missing planned work due to smartphone use | Debido al uso del smartphone he perdido tareas/actividades/trabajos/etc. previamente planificados |
2 | Having a hard time concentrating in class, while doing assignments, or while working due to smartphone use | Debido al uso del smartphone he tenido problemas de concentración (en clase, en el trabajo, etc.), mientras hacía mis tareas (deberes, etc.) o mientras trabajaba |
3 | Feeling pain in the wrists or at the back of the neck while using a smartphone | Debido al uso del smartphone he sentido dolor en alguna de mis muñecas o detrás del cuello (por ejemplo, en la nuca), etc. |
4 | Will not be able to stand not having a smartphone | No puedo estar sin mi smartphone |
5 | Feeling impatient and fretful when I am not holding my smartphone | Me siento impaciente e inquieto cuando no tengo mi smartphone |
6 | Having my smartphone in my mind even when I am not using it | Tengo mi smartphone en mente incluso cuando no lo uso |
7 | I will never give up using my smartphone even when my daily life is already greatly affected by it | No dejaré de usar mi smartphone incluso si mi vida cotidiana está realmente afectada por éste |
8 | Constantly checking my smartphone so as not to miss conversations between other people on Twitter or Facebook | Estoy comprobando constantemente mi smartphone para no perderme conversaciones con otras personas en las redes sociales (como Twitter, Facebook, etc.) |
9 | Using my smartphone longer than I had intended | Uso mi smartphone más de lo que había previsto inicialmente |
10 | The people around me tell me that I use my smartphone too much | La gente de mi alrededor me dice que uso demasiado mi smartphone |
References
- CTIA Wireless Industry Survey 2020. Available online: https://www.ctia.org/news/report-2020-annual-survey-highlights (accessed on 19 October 2021).
- Ericsson Mobility Visualizer. Available online: https://www.ericsson.com/en/mobility-report/mobility-visualizer?f=1&ft=1&r=1&t=8&s=1&u=1&y=2011,2026&c=1 (accessed on 21 October 2021).
- Anderson, M.; Jiang, J. Others Teens, social media & technology 2018. Pew Res. Res. Cent. 2018, 31, 1673–1689. [Google Scholar]
- López-Fernández, O.; Honrubia-Serrano, M.L.; Freixa-Blanxart, M. Spanish adaptation of the “Mobile Phone Problem Use Scale” for adolescent population. Adicciones 2012, 24, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Fernandez, O.; Honrubia-Serrano, L.; Freixa-Blanxart, M.; Gibson, W. Prevalence of problematic mobile phone use in British adolescents. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrero Pérez, E.J.; Rodríguez Monje, M.T.; Ruiz Sánchez De León, J.M. Mobile phone abuse or addiction. A review of the literature. Adicciones 2012, 24, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Harris, B.; Regan, T.; Schueler, J.; Fields, S.A. Problematic Mobile Phone and Smartphone Use Scales: A Systematic Review. Front. Psychol. 2020, 11, 672. [Google Scholar] [CrossRef]
- Ellis, D.A.; Davidson, B.I.; Shaw, H.; Geyer, K. Do smartphone usage scales predict behavior? Int. J. Hum. Comput. Stud. 2019, 130, 86–92. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, D.-J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, O. Short version of the Smartphone Addiction Scale adapted to Spanish and French: Towards a cross-cultural research in problematic mobile phone use. Addict. Behav. 2017, 64, 275–280. [Google Scholar] [CrossRef]
- Andrade, A.L.M.; Kim, D.-J.; Caricati, V.V.; Martins, G.D.G.; Kirihara, I.K.; Barbugli, B.C.; Enumo, S.R.F.; De Micheli, D. Validity and reliability of the Brazilian version of the Smartphone Addiction Scale-Short Version for university students and adult population. Estudos de Psicologia. 2020, 37, e190117. [Google Scholar] [CrossRef] [Green Version]
- Sfendla, A.; Laita, M.; Nejjar, B.; Souirti, Z.; Touhami, A.A.O.; Senhaji, M. Reliability of the Arabic Smartphone Addiction Scale and Smartphone Addiction Scale-Short Version in Two Different Moroccan Samples. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 325–332. [Google Scholar] [CrossRef]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pasquale, C.; Sciacca, F.; Hichy, Z. Italian Validation of Smartphone Addiction Scale Short Version for Adolescents and Young Adults (SAS-SV). Psychology 2017, 8, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Luk, T.T.; Wang, M.P.; Shen, C.; Wan, A.; Chau, P.H.; Oliffe, J.; Viswanath, K.; Chan, S.S.-C.; Lam, T.H. Short version of the Smartphone Addiction Scale in Chinese adults: Psychometric properties, sociodemographic, and health behavioral correlates. J. Behav. Addict. 2018, 7, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, A.; Bukurov, B.; Kocic, I.; Sipetic, S. The Validity and Reliability of the Serbian Version of the Smartphone Addiction Scale—Short Version. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.-Y.; Won, W.-Y.; Park, J.-W.; Min, J.-A.; Hahn, C.; Gu, X.; Choi, J.-H.; Kim, D.-J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Hall, B.J. The relationship between anxiety symptom severity and problematic smartphone use: A review of the literature and conceptual frameworks. J. Anxiety Disord. 2019, 62, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Demirci, K.; Akgönül, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender differences in factors associated with smartphone addiction: A cross-sectional study among medical college students. BMC Psychiatry 2017, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Contractor, A.A.; Frankfurt, S.B.; Weiss, N.H.; Elhai, J.D. Latent-level relations between DSM-5 PTSD symptom clusters and problematic smartphone use. Comput. Hum. Behav. 2017, 72, 170–177. [Google Scholar] [CrossRef]
- Enez Darcin, A.; Kose, S.; Noyan, C.O.; Nurmedov, S.; Yılmaz, O.; Dilbaz, N. Smartphone addiction and its relationship with social anxiety and loneliness. Behav. Inf. Technol. 2016, 35, 520–525. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. Relationships among smartphone addiction, anxiety, and family relations. Behav. Inf. Technol. 2017, 36, 1046–1052. [Google Scholar] [CrossRef]
- Rozgonjuk, D.; Levine, J.C.; Hall, B.J.; Elhai, J.D. The association between problematic smartphone use, depression and anxiety symptom severity, and objectively measured smartphone use over one week. Comput. Hum. Behav. 2018, 87, 10–17. [Google Scholar] [CrossRef]
- Elhai, J.; Levine, J.; Dvorak, R.; Hall, B. Non-social features of smartphone use are most related to depression, anxiety and problematic smartphone use. Comput. Hum. Behav. 2017, 69, 75–82. [Google Scholar] [CrossRef]
- Alhassan, A.; Alqadhib, E.; Taha, N.; Alahmari, R.; Salam, M.; Almutairi, A. The relationship between addiction to smartphone usage and depression among adults: A cross sectional study. BMC Psychiatry 2018, 18, 148. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, E.E.; Punyanunt-Carter, N.; LaFreniere, J.R.; Norman, M.S.; Kimball, T.G. The serially mediated relationship between emerging adults’ social media use and mental well-being. Comput. Hum. Behav. 2020, 102, 206–213. [Google Scholar] [CrossRef]
- Wolniewicz, C.A.; Tiamiyu, M.F.; Weeks, J.W.; Elhai, J.D. Problematic smartphone use and relations with negative affect, fear of missing out, and fear of negative and positive evaluation. Psychiatry Res. 2018, 262, 618–623. [Google Scholar] [CrossRef]
- Choksi, S.T. A study to find out the correlation of mobile phone addiction with anxiety, depression, stress and sleep quality in the college students of Surat city. Int. J. Curr. Res. Rev. 2021, 13, 137–142. [Google Scholar] [CrossRef]
- Dharmadhikari, S.P.; Harshe, S.D.; Bhide, P.P. Prevalence and Correlates of Excessive Smartphone Use among Medical Students: A Cross-sectional Study. Indian J. Psychol. Med. 2019, 41, 549–555. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhao, X. Self-control and problematic mobile phone use in Chinese college students: The mediating role of mobile phone use patterns. BMC Psychiatry 2016, 16, 416. [Google Scholar] [CrossRef] [Green Version]
- Horwood, S.; Anglim, J. Problematic smartphone usage and subjective and psychological well-being. Comput. Hum. Behav. 2019, 97, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Vannucci, A.; Flannery, K.M.; Ohannessian, C.M. Social media use and anxiety in emerging adults. J. Affect. Disord. 2017, 207, 163–166. [Google Scholar] [CrossRef]
- Coyne, S.M.; Stockdale, L.; Summers, K. Problematic cell phone use, depression, anxiety, and self-regulation: Evidence from a three year longitudinal study from adolescence to emerging adulthood. Comput. Hum. Behav. 2019, 96, 78–84. [Google Scholar] [CrossRef]
- Matar Boumosleh, J.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar]
- Elhai, J.; Dvorak, R.; Levine, J.; Hall, B. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 2017, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Luk, T.T.; Wang, M.P.; Ho, S.Y.; Fong, D.Y.T.; Wan, A.; Chan, S.S.-C.; Lam, T.H. Self-Reported Screen Time on Social Networking Sites Associated With Problematic Smartphone Use in Chinese Adults: A Population-Based Study. Front. Psychiatry 2020, 11, 614061. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.A.; Chandrasekaran, V.; Brahadeeswari, H. Prevalence of smartphone addiction and its effects on sleep quality: A cross-sectional study among medical students. Indian Psychiatry J. 2019, 28, 82–85. [Google Scholar]
- Randjelovic, P.; Stojiljkovic, N.; Radulovic, N.; Stojanovic, N.; Ilic, I. Problematic Smartphone Use, Screen Time and Chronotype Correlations in University Students. Eur. Addict. Res. 2021, 27, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rodríguez, J.-M.; Aznar-Díaz, I.; Marín-Marín, J.-A.; Soler-Costa, R.; Rodríguez-Jiménez, C. Impact of Problematic Smartphone Use and Instagram Use Intensity on Self-Esteem with University Students from Physical Education. Int. J. Environ. Res. Public Health 2020, 17, 4336. [Google Scholar] [CrossRef]
- Laurence, P.G.; Busin, Y.; da Cunha Lima, H.S.; Macedo, E.C. Predictors of problematic smartphone use among university students. Psicol. Reflex. Crit. 2020, 33, 8. [Google Scholar] [CrossRef] [PubMed]
- Cocoradă, E.; Maican, C.I.; Cazan, A.-M.; Maican, M.A. Assessing the smartphone addiction risk and its associations with personality traits among adolescents. Child. Youth Serv. Rev. 2018, 93, 345–354. [Google Scholar] [CrossRef]
- Kraut, R.; Patterson, M.; Lundmark, V.; Kiesler, S.; Mukophadhyay, T.; Scherlis, W. Internet paradox: A social technology that reduces social involvement and psychological well-being? Am. Psychol. 1998, 53, 1017–1031. [Google Scholar] [CrossRef]
- Winstone, L.; Mars, B.; Haworth, C.M.A.; Kidger, J. Social media use and social connectedness among adolescents in the United Kingdom: A qualitative exploration of displacement and stimulation. BMC Public Health 2021, 21, 1736. [Google Scholar] [CrossRef]
- Twenge, J.M.; Spitzberg, B.H.; Campbell, W.K. Less in-person social interaction with peers among U.S. adolescents in the 21st century and links to loneliness. J. Soc. Pers. Relat. 2019, 36, 1892–1913. [Google Scholar] [CrossRef]
- Boer, M.; van den Eijnden, R.J.J.M.; Boniel-Nissim, M.; Wong, S.-L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ Intense and Problematic Social Media Use and Their Well-Being in 29 Countries. J. Adolesc. Health 2020, 66, S89–S99. [Google Scholar] [CrossRef]
- Houghton, S.; Lawrence, D.; Hunter, S.C.; Rosenberg, M.; Zadow, C.; Wood, L.; Shilton, T. Reciprocal Relationships between Trajectories of Depressive Symptoms and Screen Media Use during Adolescence. J. Youth Adolesc. 2018, 47, 2453–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Loid, K.; Täht, K.; Rozgonjuk, D. Do pop-up notifications regarding smartphone use decrease screen time, phone checking behavior, and self-reported problematic smartphone use? Evidence from a two-month experimental study. Comput. Hum. Behav. 2020, 102, 22–30. [Google Scholar] [CrossRef]
- Stiglic, N.; Viner, R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef] [Green Version]
- Beyens, I.; Pouwels, J.L.; van Driel, I.I.; Keijsers, L.; Valkenburg, P.M. The effect of social media on well-being differs from adolescent to adolescent. Sci. Rep. 2020, 10, 10763. [Google Scholar] [CrossRef] [PubMed]
- Orben, A.; Przybylski, A.K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Coyne, S.M.; Rogers, A.A.; Zurcher, J.D.; Stockdale, L.; Booth, M. Does time spent using social media impact mental health?: An eight year longitudinal study. Comput. Hum. Behav. 2020, 104, 106160. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales; Psychology Foundation of Australia: Sydney, Australia, 1996. [Google Scholar]
- Sözbilir, F.; Kürşad, M. Does Social Media Usage Threaten Future Human Resources by Causing Smartphone Addiction? A Study on Students Aged 9–12. Addicta 2018, 5, 185–203. [Google Scholar] [CrossRef]
- Cha, S.-S.; Seo, B.-K. Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychol. Open 2018, 5, 2055102918755046. [Google Scholar] [CrossRef]
- Sfendla, A.; Martinsson, B.; Filipovic, Y.; Senhaji, M.; Kerekes, N. Psychological distress in a sample of Moroccan prisoners with drug-dependence. Int. J. Offender Ther. Comp. Criminol. 2021, 21, 306624X211010286. [Google Scholar] [CrossRef]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed diagnostic criteria for internet addiction. Addiction 2010, 105, 556–564. [Google Scholar] [CrossRef]
- Geng, Y.; Gu, J.; Wang, J.; Zhang, R. Smartphone addiction and depression, anxiety: The role of bedtime procrastination and self-control. J. Affect. Disord. 2021, 293, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Aker, S.; Şahin, M.K.; Sezgin, S.; Oğuz, G. Psychosocial Factors Affecting Smartphone Addiction in University Students. J. Addict. Nurs. 2017, 28, 215–219. [Google Scholar] [CrossRef]
- Tateno, M.; Kim, D.-J.; Teo, A.R.; Skokauskas, N.; Guerrero, A.P.S.; Kato, T.A. Smartphone addiction in Japanese college students: Usefulness of the Japanese version of the Smartphone Addiction Scale as a screening tool for a new form of internet addiction. Psychiatry Investig. 2019, 16, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Enez Darcin, A.; Noyan, C.; Nurmedov, S.; Yilmaz, O.; Dilbaz, N. Smartphone addiction in relation with social anxiety and loneliness among university students in turkey. Eur. Psychiatry 2015, 30, 505. [Google Scholar] [CrossRef]
- West, R.; Ash, C.; Dapore, A.; Kirby, B.; Malley, K.; Zhu, S. Problematic smartphone use: The role of reward processing, depressive symptoms and self-control. Addict. Behav. 2021, 122, 107015. [Google Scholar] [CrossRef]
- Xiang, M.-Q.; Lin, L.; Wang, Z.-R.; Li, J.; Xu, Z.; Hu, M. Sedentary Behavior and Problematic Smartphone Use in Chinese Adolescents: The Moderating Role of Self-Control. Front. Psychol. 2019, 10, 3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, N.; Dadgar, K.; Xiao, B.; Hesse, C.; Shapka, J.D. Social Disconnection During COVID-19: The Role of Attachment, Fear of Missing Out, and Smartphone Use. J. Res. Adolesc. 2021, 31, 748–763. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, A.; Adil, A.; Hamza, A.; Ghayas, S.; Niazi, S.; Khan, A. Relationship between Attachment styles and Social Media addiction among young adults: Mediating role of Self-esteem. ISRA Med. 2021, 13, 48–51. [Google Scholar]
- Balta, S.; Jonason, P.; Denes, A.; Emirtekin, E.; Tosuntaş, Ş.B.; Kircaburun, K.; Griffiths, M.D. Dark personality traits and problematic smartphone use: The mediating role of fearful attachment. Personal. Individ. Differ. 2019, 149, 214–219. [Google Scholar] [CrossRef]
- Jimeno, M.V.; Ricarte, J.J.; Toledano, A.; Mangialavori, S.; Cacioppo, M.; Ros, L. Role of Attachment and Family Functioning in Problematic Smartphone Use in Young Adults. J. Fam. Issues 2021, 43, 0192513X21993881. [Google Scholar] [CrossRef]
- Remondi, C.; Compare, A.; Tasca, G.A.; Greco, A.; Pievani, L.; Poletti, B.; Brugnera, A. Insecure Attachment and Technology Addiction Among Young Adults: The Mediating Role of Impulsivity, Alexithymia, and General Psychological Distress. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 761–767. [Google Scholar] [CrossRef]
- Billieux, J. Problematic Use of the Mobile Phone: A Literature Review and a Pathways Model. Curr. Psychiatry Rev. 2012, 8, 299–307. [Google Scholar] [CrossRef] [Green Version]
Language | Reference | N | % Female | Mean Age | Cutoff Value (Gender) | Percentage “Addicted” (Gender) | Clinical Assessment |
---|---|---|---|---|---|---|---|
Korean | Kwon et al., 2013 [9] | 540 | 36.5 | 14.5 | 31 (men) 33 (women) | 20.6% 16.6% (men) 26.6% (women) | Yes |
Spanish (Spain) | López-Fernández, 2017 [10] | 281 | 80.1 | 25.61 | 32 (unique) a | 12.8% 15.2% (men) 10.2% (women) | Symptoms b |
French (Belgium) | López-Fernández, 2017 [10] | 144 | 68.8 | 29.11 | 32 (unique) a | 21.5% 20% (men) 22% (women) | Symptoms b |
Portuguese (Brazil) | Andrade et al., 2020 [11] | 718 c | 63.5 | 22.1 35.2 | 31 (men) 33 (women) | 39.4% 37.7% (men) 40.4% (women) | Symptoms b |
Moroccan | Sfendla et al., 2018 [12] | 310 | 50.6 | 23.1 | 31 (men) 33 (women) | 55.8% (sex differences not specified) | No |
German (Switzerland) | Haug et al., 2015 [13] | 1519 | 51.8 | 17 | 31 (men) 33 (women) | 16.9% 14.1% (men) 19.4% (women) | No |
Italian | De Pasquale et al., 2017 [14] | 633 | 55.4 | 18 | 31 (men) 33 (women) | NA | No |
Chinese | Tsun Luk et al., 2018 [15] | 3211 | 54.7 | 43.3 | 31 (men) 33 (women) | 37.7% 35.3% (men) 40.3% (women) | No |
Serbian | Nikolik et al., 2021 [16] | 323 | 69.0 | 21 | 31 (men) 33 (women) | 19.5% 14% (men) 22% (women) | No |
Sample | N Total Sample | N Sample Age < 30 | Fieldwork (Start–End) [dd/mm/yy] | % Female | Average Age (sd) | % with Higher Education | SAS-SV Scores 2 Mean (sd) |
---|---|---|---|---|---|---|---|
Spain 1 1 | 1200 | 1200 | 27/02/20–18/06/20 | 50.0 | 20 (1.5) | 13.8 | 27 (9.8) |
Spain 2 1 | 1200 | 1200 | 1/03/21–16/04/21 | 50.0 | 21 (1.5) | 13.2 | 25.2 (9.9) |
Spain 3 | 986 | 393 | 30/03/20–29/07/20 | 60.8 | 22.6 (3.3) | 39.7 | 26.3 (9.6) |
Argentina | 547 | 212 | 31/03/20–20/06/20 | 77.8 | 23.2 (2.9) | 50.9 | 29.7 (9.4) |
Chile | 504 | 180 | 1/04/20–15/09/20 | 65.6 | 22.5 (4.2) | 41.1 | 31.16 (10.6) |
Colombia | 770 | 276 | 31/03/20–3/09/20 | 80.1 | 22.4 (3.8) | 39.1 | 30.6 (10.3) |
Ecuador | 766 | 433 | 1/04/20–30/07/20 | 67.2 | 23.8 (3.2) | 48.0 | 28.5 (10.2) |
El Salvador | 641 | 408 | 1/04/20–3/06/20 | 58.8 | 21.8 (3.2) | 27.5 | 32.2 (10.5) |
Guatemala | 1619 | 792 | 2/04/20–29/08/20 | 54.2 | 22.5 (3.5) | 42.7 | 28.7 (9.4) |
México | 1084 | 475 | 30/03/20–3/08/20 | 69.9 | 22.7 (3.3) | 43.6 | 29.3 (10.2) |
Perú | 1083 | 720 | 2/02/20–24/09/20 | 65.3 | 22 (3.5) | 37.2 | 30.1 (9.9) |
Uruguay | 876 | 405 | 1/04/20–29/09/20 | 70.4 | 22.5 (3.6) | 36.8 | 29.3 (10.1) |
Venezuela | 624 | 243 | 8/04/20–23/06/20 | 71.6 | 22.2 (3.4) | 28.0 | 30.4 (10.6) |
Sample | Reliability (Cronbach α) | Pearson’s Correlation with | |||
---|---|---|---|---|---|
Anxiety | Depression | Stress | Social Media Use | ||
Spain 1 | 0.83 | 0.42 *** | 0.36 *** | 0.42 *** | 0.34 *** |
Spain 2 | 0.84 | 0.36 *** | 0.32 *** | 0.40 *** | 0.31 *** |
Spain 3 | 0.85 | 0.35 *** | 0.36 *** | 0.39 *** | 0.31 *** |
Argentina | 0.81 | 0.23 *** | 0.24 *** | 0.32 *** | 0.30 *** |
Chile | 0.86 | 0.39 *** | 0.47 *** | 0.47 *** | 0.31 *** |
Colombia | 0.84 | 0.30 *** | 0.40 *** | 0.38 *** | 0.15 * |
Ecuador | 0.87 | 0.41 *** | 0.37 *** | 0.41 *** | 0.24 *** |
El Salvador | 0.86 | 0.28 *** | 0.37 *** | 0.39 *** | 0.21 *** |
Guatemala | 0.83 | 0.27 *** | 0.30 *** | 0.33 *** | 0.20 *** |
México | 0.85 | 0.36 *** | 0.39 *** | 0.40 *** | 0.19 *** |
Perú | 0.86 | 0.41 *** | 0.42 *** | 0.45 *** | 0.23 *** |
Uruguay | 0.84 | 0.37 *** | 0.40 *** | 0.44 *** | 0.32 *** |
Venezuela | 0.85 | 0.45 *** | 0.40 *** | 0.51 *** | 0.23 *** |
Percentage of Young People with Symptoms of Each Construct | |||||
---|---|---|---|---|---|
Sample | Severe Anxiety | Severe Depression | Severe Stress | Using Social Media 4 + Hours | Problematic in All Four Criteria |
Spain 1 | 28.5 | 17.2 | 18.8 | 22.2 | 4.0 |
Spain 2 | 24.1 | 15.6 | 19.8 | 18.5 | 2.5 |
Spain 3 | 22.4 | 22.9 | 22.1 | 14.8 | 4.6 |
Argentina | 19.3 | 18.4 | 23.1 | 21.7 | 1.9 |
Chile | 38.3 | 33.3 | 38.3 | 32.8 | 7.2 |
Colombia | 37.3 | 27.9 | 34.4 | 33 | 9.4 |
Ecuador | 39.5 | 25.2 | 28.2 | 37.4 | 8.3 |
El Salvador | 37.5 | 33.3 | 33.3 | 31.4 | 7.1 |
Guatemala | 29.8 | 24.0 | 26.3 | 26.4 | 5.3 |
Mexico | 30.3 | 23.4 | 29.3 | 30.5 | 5.5 |
Peru | 41.5 | 33.9 | 35.8 | 32.5 | 9.0 |
Uruguay | 20.5 | 22.5 | 24.0 | 23.0 | 4.0 |
Venezuela | 37.9 | 26.3 | 32.1 | 38.7 | 9.1 |
Sample | Youden Index | True Condition 1 | Cutoff Value | % Addicted |
---|---|---|---|---|
Spain 1 | 0.462 | DSM | 30 | 36.0 |
Spain 2 | 0.485 | ADSM | 31 | 23.2 |
Spain 3 | 0.546 | ASM | 31 | 27.2 |
Argentina | 0.659 | SM | 38 | 16.5 |
Chile | 0.469 | AM | 35 | 37.8 |
Colombia | 0.418 | ADSM | 28 | 58.3 |
Ecuador | 0.432 | ADSM | 35 | 24.3 |
El Salvador | 0.445 | ADSM | 36 | 34.6 |
Guatemala | 0.318 | SM | 26 | 52.7 |
México | 0.566 | ADSM | 32 | 35.0 |
Perú | 0.393 | DSM | 36 | 28.8 |
Uruguay | 0.656 | DSM | 34 | 32.6 |
Venezuela | 0.478 | SM | 33 | 36.2 |
Sample | Youden Index | True Condition 1 | Cutoff Value | % Addicted |
---|---|---|---|---|
Spain 1 | 0.458 | ADSM | 30 | 36.0 |
Spain 2 | 0.485 | ADSM | 31 | 23.2 |
Spain 3 | 0.508 | ADSM | 31 | 27.2 |
Argentina | 0.601 | ADSM | 40 | 14.2 |
Chile | 0.398 | ADSM | 35 | 37.8 |
Colombia | 0.418 | ADSM | 28 | 58.3 |
Ecuador | 0.432 | ADSM | 35 | 24.3 |
El Salvador | 0.445 | ADSM | 36 | 34.6 |
Guatemala | 0.297 | ADSM | 26 | 52.7 |
México | 0.566 | ADSM | 32 | 35.0 |
Perú | 0.378 | ADSM | 33 | 34.2 |
Uruguay | 0.637 | ADSM | 34 | 32.6 |
Venezuela | 0.320 | ADSM | 33 | 36.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Manglano, J.; López-Madrigal, C.; Sádaba-Chalezquer, C.; Serrano, C.; Lopez-Fernandez, O. Difficulties in Establishing “Truth” Conditions in the Assessment of Addictive Smartphone Use in Young Adults. Int. J. Environ. Res. Public Health 2022, 19, 358. https://doi.org/10.3390/ijerph19010358
García-Manglano J, López-Madrigal C, Sádaba-Chalezquer C, Serrano C, Lopez-Fernandez O. Difficulties in Establishing “Truth” Conditions in the Assessment of Addictive Smartphone Use in Young Adults. International Journal of Environmental Research and Public Health. 2022; 19(1):358. https://doi.org/10.3390/ijerph19010358
Chicago/Turabian StyleGarcía-Manglano, Javier, Claudia López-Madrigal, Charo Sádaba-Chalezquer, Cecilia Serrano, and Olatz Lopez-Fernandez. 2022. "Difficulties in Establishing “Truth” Conditions in the Assessment of Addictive Smartphone Use in Young Adults" International Journal of Environmental Research and Public Health 19, no. 1: 358. https://doi.org/10.3390/ijerph19010358
APA StyleGarcía-Manglano, J., López-Madrigal, C., Sádaba-Chalezquer, C., Serrano, C., & Lopez-Fernandez, O. (2022). Difficulties in Establishing “Truth” Conditions in the Assessment of Addictive Smartphone Use in Young Adults. International Journal of Environmental Research and Public Health, 19(1), 358. https://doi.org/10.3390/ijerph19010358