Income-Related Mortality Inequalities and Its Social Factors among Middle-Aged and Older Adults at the District Level in Aging Seoul: An Ecological Study Using Administrative Big Data
Abstract
:1. Introduction
1.1. Population Aging and Health Inequality among MOAs
1.2. Health Inequality Research Using Population-Based Administrative Income Data
1.3. Health Inequalities and District-Level Social Factors
1.4. Mortality Inequality and Measurements
1.5. Aim of the Present Study
2. Materials and Methods
2.1. Data
2.2. Study Design
2.3. Income Groups
2.4. SII and RII of Mortality
2.5. Demographic and Socioeconomic Characteristics of District
2.6. Analytic Strategy
where ε = λWε + μ,
3. Results
3.1. Distribution and Spatial Correlation of SII and RII
3.2. OLS and Spatial Regression
3.2.1. Procedure of OLS and Spatial Regression
3.2.2. Results of OLS and Spatial Regression
4. Discussion
4.1. Differential Mortality Rates, District-Level SII, and RII
4.1.1. Summary of Findings
4.1.2. Income-Related Mortality Gradient and Cross-District Differences
4.1.3. Spatial Correlation
4.1.4. Gender Differences
4.1.5. Significance of Using NHIS Income Data
4.2. Social Factors of District-Level SII and RII
4.2.1. Gini Coefficient of Income
4.2.2. Pensions and Jobs
4.2.3. Female Household Head
4.2.4. Aging Rate
4.3. Limitations
4.4. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FHH | Proportion of women among heads of household aged 45 or above |
GC | Gini coefficient |
MOAs | Middle-aged and older adults |
NHIS | National Health Insurance Service |
NP | Proportion of national pension earners among those aged 62 or above |
NTS | National Tax Service |
OECD | Organization for Economic Cooperation and Development |
OLS | Ordinary Least Squares |
OSH | Proportion of households with single older adult household head |
P65 | Proportion of population aged 65 or above |
PR | Poverty rate, defined as proportion of population below 50% of median income, in equivalized |
RII | Relative Index of Inequality |
SEM | Spatial error model |
SII | Slope Index of Inequality |
SLM | Spatial lag model |
SOP | Proportion of special occupational pension earners among those aged 62 or above |
U.S. | United States |
USD | U.S. dollar |
VIF | Variation inflation factor |
WP | Proportion of working population among those aged 45 or above |
References
- Connelly, R.; Playford, C.J.; Gayle, V.; Dibben, C. The role of administrative data in the big data revolution in social science research. Soc. Sci. Res. 2016, 59, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.; Kim, M.; Kim, S.-Y.; You, S. The merits and limitations of the NHIS big data in the study of income distribution. Korea Soc. Policy Rev. 2021, 28, 75–105. [Google Scholar] [CrossRef]
- Shin, S.S.; Woo, K.S.; Shin, Y.-j. A systematic review of studies on public health using multilevel analysis: Focused on research trends and the assessment of risk of bias. Health Soc. Welf. Rev. 2015, 35, 157–189. [Google Scholar] [CrossRef]
- Korean Government. Health Plan 2030, 2021–2030; Korean Government: Seoul, Korea, 2021. [Google Scholar]
- Kim, Y.-E.; Jung, Y.-S.; Ock, M.; Park, H.; Kim, K.-B.; Go, D.-S.; Yoon, S.-J. The gaps in health-adjusted life years (hale) by income and region in korea: A national representative bigdata analysis. Int. J. Environ. Res. Public Health 2021, 18, 3473. [Google Scholar] [CrossRef]
- Population Proejctions. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=POPPROJ (accessed on 11 December 2021).
- Kim, K.W.; Kim, O.S. Super Aging in South Korea Unstoppable but Mitigatable: A Sub-National Scale Population Projection for Best Policy Planning. Spat. Demogr. 2020, 8, 155–173. [Google Scholar] [CrossRef]
- Decoster, A.; Minten, T.; Spinnewijn, J. The Income Gradient in Mortality during the Covid-19 Crisis: Evidence from Belgium. J. Econ. Inequal. 2021, 19, 551–570. [Google Scholar] [CrossRef]
- Mosquera, P.A.; San Sebastian, M.; Waenerlund, A.-K.; Ivarsson, A.; Weinehall, L.; Gustafsson, P.E. Income-related inequalities in cardiovascular disease from mid-life to old age in a Northern Swedish cohort: A decomposition analysis. Soc. Sci. Med. 2016, 149, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Adamo, D.E.; Anderson, T.; Koochaki, M.; Fritz, N.E. Declines in grip strength may indicate early changes in cognition in healthy middle-aged adults. PLoS ONE 2020, 15, e0232021. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Chou, C.-Y.; Lin, H.-J.; Huang, C.-C.; Chang, C.-T. Abdominal aortic calcification score predicts the occurrence of coronary artery disease in middle-aged peritoneal dialysis patients. Nephrology 2019, 24, 336–340. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Early-Life Conditions and Cognitive Function in Middle-and Old-Aged Chinese Adults: A Longitudinal Study. Int. J. Environ. Res. Public Health 2020, 17, 3451. [Google Scholar] [CrossRef]
- Mackenbach, J.P.; Rubio Valverde, J.; Bopp, M.; Brønnum-Hansen, H.; Costa, G.; Deboosere, P.; Kalediene, R.; Kovács, K.; Leinsalu, M.; Martikainen, P.; et al. Progress against inequalities in mortality: Register-based study of 15 European countries between 1990 and 2015. Eur. J. Epidemiol. 2019, 34, 1131–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Kwon, S.W.; Lee, Y.J. Health inequality of Seoul citizens by individual effects and community effects. Seoul City Stud. 2012, 13, 15–35. [Google Scholar]
- Park, E. A comparison of community health status by region and an investigation of related factors using community health indicators. J. Korean Acad. Community Health Nurs. 2012, 23, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Bahk, J.; Ock, M.; Kim, I.; Kang, H.-Y.; Kim, Y.-Y.; Park, J.H.; Khang, Y.-H. Income-related inequality in quality-adjusted life expectancy in Korea at the national and district levels. Health Qual. Life Outcomes 2020, 18, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez Roux, A.V.; Mair, C. Neighborhoods and health. Ann. N. Y. Acad. Sci. 2010, 1186, 125–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A. Estimating small area health-related characteristics of populations: A methodological review. Geospat. Health 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The Association between Income and Life Expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750–1766. [Google Scholar] [CrossRef]
- Kinge, J.M.; Vallejo-Torres, L.; Morris, S. Income related inequalities in avoidable mortality in Norway: A population-based study using data from 1994–2011. Health Policy 2015, 119, 889–898. [Google Scholar] [CrossRef]
- Bahk, J.; Kang, H.Y.; Khang, Y.H. Life expectancy and inequalities therein by income from 2016 to 2018 across the 253 electoral constituencies of the National Assembly of the Republic of Korea. J. Prev. Med. Public Health 2020, 53, 143–148. [Google Scholar] [CrossRef]
- Jones, R.S. Health-Care Reform in Korea. OECD Econ. Dep. Work. Pap. 2010. [CrossRef]
- Lim, H.-K.; Kang, H.-Y.; Kim, I.; Khang, Y.-H. Spatio-temporal analysis of district-level life expectancy from 2004 to 2017 in korea. J. Korean Med. Sci. 2021, 36. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P. Deprivation. J. Soc. Policy 1987, 16, 125–146. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J. Health inequality of local area in Seoul: Reinterpretation of neighborhood deprivation. J. Korean Assoc. Reg. Geogr. 2014, 20, 217–229. [Google Scholar]
- Lee, J.H. The regional health inequity, and individual and neighborhood level health determinants. Health Soc. Welf. Rev. 2016, 36, 345–384. [Google Scholar]
- Celentano, D.D.; Szklo, M. Gordis Epidemiology, 6th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bartley, M. Health Inequality: An Introduction to Concepts, Theories and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Harper, S.; Lynch, J. Measuring health inequalities: Measurement and decomposition. In Methods in Social Epidemiology, 2nd ed.; Oakes, J.M., Kaufman, J.S., Eds.; Jossey-Bass: San Francisco, CA, USA, 2017; pp. 91–131. [Google Scholar]
- Moreno-Betancur, M.; Latouche, A.; Menvielle, G.; Kunst, A.E.; Rey, G. Relative index of inequality and slope index of inequality: A structured regression framework for estimation. Epidemiology 2015, 26, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegelman, D.; Hertzmark, E. Easy SAS calculations for risk or prevalence ratios and differences. Am. J. Epidemiol. 2005, 162, 199–200. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Rey, S.J.; Anselin, L. PySAL: A Python library of spatial analytical methods. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 175–193. [Google Scholar]
- Marmot, M. The Health Gap: The Challenge of an Unequal World; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Health Gap Profile by Sub-National Region: Fair Society & Healthy Life. Available online: https://drive.google.com/open?id=1vIiXtjEjfoK0fWcECEh3DWmKjgWDhYqc (accessed on 11 December 2021).
- Annandale, E. Health Status and Gender. In The New Blackwell Companion to Medical Sociology; Cockerham, W.C., Ed.; Wiley-Blackwell: West Sussex, UK, 2016; pp. 97–112. [Google Scholar]
- Wilkinson, R.G. The Impact of Inequality: How to Make Sick Societies Healthier; Norton, W.W., Ed.; The New Press: New York, NY, USA, 2005. [Google Scholar]
- Labour Force Participation Rate. Available online: https://data.oecd.org/emp/labour-force-participation-rate.htm (accessed on 11 December 2021).
- Lee, C.; Yang, Q.; Im, E.-O.; McConnell, E.S.; Jung, S.-H.; Kim, H. A 10-year trend in income disparity of cardiovascular health among older adults in South Korea. SSM-Popul. Health 2020, 12, 100682. [Google Scholar] [CrossRef]
Variables | Mean | SD | Min. | Max. | Max.−Min. | |
---|---|---|---|---|---|---|
Demographic factors | P65 1 | 0.123 | 0.016 | 0.099 | 0.151 | 0.052 |
OSH 2 | 0.066 | 0.013 | 0.045 | 0.091 | 0.046 | |
FHH 3 | 0.305 | 0.019 | 0.268 | 0.336 | 0.068 | |
Socio-economic factors | PR 4 | 0.347 | 0.054 | 0.220 | 0.438 | 0.218 |
GC 5 | 0.579 | 0.047 | 0.525 | 0.707 | 0.183 | |
WP 6 | 0.477 | 0.039 | 0.413 | 0.569 | 0.156 | |
NP 7 | 0.316 | 0.018 | 0.282 | 0.345 | 0.063 | |
SOP 8 | 0.041 | 0.016 | 0.023 | 0.091 | 0.068 |
Income Quintile | Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min. | Max. | Max.−Min. | Mean | SD | Min. | Max. | Max.−Min. | |
First | 999 | 118 | 744 | 1190 | 446 | 416 | 43 | 320 | 487 | 167 |
Second | 597 | 48 | 481 | 693 | 212 | 319 | 22 | 269 | 350 | 81 |
Third | 523 | 57 | 382 | 641 | 259 | 313 | 23 | 270 | 357 | 87 |
Fourth | 449 | 54 | 312 | 532 | 221 | 308 | 22 | 247 | 346 | 99 |
Fifth | 382 | 60 | 262 | 489 | 227 | 295 | 31 | 235 | 373 | 139 |
Male | Female | Male | Female | |
---|---|---|---|---|
Jongno-gu | 430 | 155 | 3.90 | 1.62 |
Jung-gu | 488 | 82 | 4.03 | 1.60 |
Yongsan-gu | 457 | 77 | 4.76 | 1.57 |
Seongdong-gu | 399 | 79 | 3.36 | 1.62 |
Gwangjin-gu | 369 | 72 | 3.80 | 1.41 |
Dongdaemun-gu | 459 | 83 | 3.52 | 1.55 |
Jungnang-gu | 453 | 98 | 3.47 | 1.40 |
Seongbuk-gu | 402 | 68 | 3.10 | 1.50 |
Gangbuk-gu | 492 | 117 | 3.27 | 1.50 |
Dobong-gu | 359 | 73 | 3.12 | 1.32 |
Nowon-gu | 371 | 87 | 3.90 | 1.35 |
Eunpyeong-gu | 392 | 92 | 3.31 | 1.42 |
Seodaemun-gu | 344 | 72 | 3.50 | 1.43 |
Mapo-gu | 339 | 85 | 3.38 | 1.55 |
Yangcheon-gu | 321 | 62 | 4.32 | 1.20 |
Gangseo-gu | 421 | 120 | 4.09 | 1.56 |
Guro-gu | 357 | 57 | 3.22 | 1.12 |
Geumcheon-gu | 415 | 90 | 3.61 | 1.49 |
Yeongdeungpo-gu | 399 | 66 | 4.59 | 1.52 |
Dongjak-gu | 331 | 66 | 3.21 | 1.30 |
Gwanak-gu | 412 | 95 | 3.83 | 1.49 |
Seocho-gu | 196 | 40 | 3.64 | 1.21 |
Gangnam-gu | 225 | 92 | 4.46 | 1.52 |
Songpa-gu | 253 | 56 | 3.92 | 1.23 |
Gangdong-gu | 318 | 51 | 3.26 | 1.26 |
SII | RII | P65 | OSH | FHH | PR | GC | WP | SOP | |||
---|---|---|---|---|---|---|---|---|---|---|---|
M | F | M | F | ||||||||
P65 1 | 0.72 ** | 0.46 * | −0.21 | 0.55 ** | - | - | - | - | - | - | - |
OSH 2 | 0.77 ** | 0.51 ** | −0.05 | 0.54 ** | 0.93 ** | - | - | - | - | - | - |
FHH 3 | 0.73 ** | 0.61 ** | 0.04 | 0.72 ** | 0.79 ** | 0.76 ** | - | - | - | - | - |
PR 4 | 0.92 ** | 0.53 ** | −0.24 | 0.54 ** | 0.81 ** | 0.80 ** | 0.73 ** | - | - | - | - |
GC 5 | 0.17 | 0.25 | 0.51 ** | 0.52 ** | 0.41 * | 0.44 * | 0.36 | 0.14 | - | - | - |
WP 6 | −0.92 ** | −0.44 * | 0.32 | −0.51 ** | −0.80 ** | −0.76 ** | −0.71 ** | −0.97 ** | −0.03 | - | - |
SOP 7 | −0.88 ** | −0.39 | 0.2 | −0.42 * | −0.54 ** | −0.61 ** | −0.57 ** | −0.85 ** | 0.11 | 0.86 ** | - |
NP 8 | −0.68 ** | −0.44 * | −0.04 | −0.58 ** | −0.78 ** | −0.90 ** | −0.79 ** | −0.68 ** | −0.44 * | 0.66 ** | 0.56 ** |
Outcome | Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SII | RII | SII | RII | |||||||
Model | Model 1 (OLS) | Model 2 (SLM) | Model 3 (OLS) | Model 4 (OLS) | Model 5 (OLS) | |||||
Variable | β | SE | β | SE | β | SE | β | SE | β | SE |
Intercept | 0.072 | 0.035 | 0.083 ** | 0.029 | 4.254 | 3.191 | −0.058 | 0.037 | −0.255 | 1.296 |
NP 1 | 0.016 | 0.069 | 0.006 | 0.056 | −5.615 | 7.013 | 0.070 | 0.06 | −0.476 | 2.647 |
SOP 2 | −0.169 * | 0.067 | −0.187 ** | 0.055 | −5.646 | 6.458 | −0.038 | 0.053 | −3.199 | 1.895 |
WP 3 | −0.087 * | 0.034 | −0.083 ** | 0.027 | - | - | 0.023 | 0.028 | - | - |
OSH 4 | 0.139 | 0.114 | 0.175 | 0.093 | - | - | 0.105 | 0.089 | −4.447 | 3.819 |
FHH 5 | - | - | - | - | - | - | 0.091 * | 0.04 | 4.497 * | 1.759 |
GC 6 | - | - | - | - | 7.612 ** | 2.013 | - | - | 1.535 * | 0.562 |
P65 7 | - | - | - | - | −23.939 ** | 7.765 | - | - | - | - |
Wy | - | - | −0.311 * | 0.146 | - | - | - | - | - | - |
R-squared | 0.898 | - | 0.917 | - | 0.525 | - | 0.427 | - | 0.653 | - |
Adjusted R-squared | 0.878 | - | 0.919 † | - | 0.43 | - | 0.277 | - | 0.561 | - |
Moran’s I of residuals | −0.050 | - | - | - | 0.032 | - | −0.101 | - | −0.100 | - |
LM (error) | 0.126 | - | - | - | 0.051 | - | 0.505 | - | 0.497 | - |
LM (lag) | 4.132 * | - | - | - | 0.147 | - | 1.129 | - | 0.143 | - |
Robust LM (error) | 0.748 | - | - | - | 0.776 | - | 0.157 | - | 2.416 | - |
Robust LM (lag) | 4.754 * | - | - | - | 0.872 | - | 0.781 | - | 2.062 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; You, S.; You, J.-s.; Kim, S.-Y.; Park, J.H. Income-Related Mortality Inequalities and Its Social Factors among Middle-Aged and Older Adults at the District Level in Aging Seoul: An Ecological Study Using Administrative Big Data. Int. J. Environ. Res. Public Health 2022, 19, 383. https://doi.org/10.3390/ijerph19010383
Kim M, You S, You J-s, Kim S-Y, Park JH. Income-Related Mortality Inequalities and Its Social Factors among Middle-Aged and Older Adults at the District Level in Aging Seoul: An Ecological Study Using Administrative Big Data. International Journal of Environmental Research and Public Health. 2022; 19(1):383. https://doi.org/10.3390/ijerph19010383
Chicago/Turabian StyleKim, Minhye, Suzin You, Jong-sung You, Seung-Yun Kim, and Jong Heon Park. 2022. "Income-Related Mortality Inequalities and Its Social Factors among Middle-Aged and Older Adults at the District Level in Aging Seoul: An Ecological Study Using Administrative Big Data" International Journal of Environmental Research and Public Health 19, no. 1: 383. https://doi.org/10.3390/ijerph19010383
APA StyleKim, M., You, S., You, J. -s., Kim, S. -Y., & Park, J. H. (2022). Income-Related Mortality Inequalities and Its Social Factors among Middle-Aged and Older Adults at the District Level in Aging Seoul: An Ecological Study Using Administrative Big Data. International Journal of Environmental Research and Public Health, 19(1), 383. https://doi.org/10.3390/ijerph19010383