Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence from 137 Multinational Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables
2.2. Data
2.3. Estimating Methods
3. Results and Discussion
3.1. Baseline Results
3.2. Robustness Test
3.2.1. Other Variables of EPU
3.2.2. Changing the Measurement of Carbon Emissions
3.2.3. Panel Fixed Effect (FE) Estimation
3.2.4. New Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jordà, Ò.; Singh, S.R.; Taylor, A.M. Longer-run economic consequences of pandemics? Rev. Econ. Stat. 2020, 1–29. [Google Scholar] [CrossRef]
- Bakas, D.; Triantafyllou, A. Commodity price volatility and the economic uncertainty of pandemics. Econ. Lett. 2020, 193, 109283. [Google Scholar] [CrossRef]
- Baker, S.R.; Farrokhnia, R.A.; Meyer, S.; Pagel, M.; Yannelis, C. How does household spending respond to an epidemic? Consumption during the 2020 COVID-19 pandemic. Rev. Asset Pricing Stud. 2020, 10, 834–862. [Google Scholar] [CrossRef]
- Balcilar, M.; Gupta, R.; Segnon, M. The role of economic policy uncertainty in predicting US recessions: A mixed-frequency Markov-switching vector autoregressive approach. Economics 2016, 10, 20160027. [Google Scholar] [CrossRef] [Green Version]
- Degiannakis, S.; Filis, G.; Panagiotakopoulou, S. Oil price shocks and uncertainty: How stable is their relationship over time? Econ. Model. 2018, 72, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, A.; Smyth, R.; Zhang, X. Oil prices and economic policy uncertainty: Evidence from a nonparametric panel data model. Energy Econ. 2019, 83, 40–51. [Google Scholar] [CrossRef]
- Phan, D.H.B.; Iyke, B.N.; Sharma, S.S.; Affandi, Y. Economic policy uncertainty and financial stability–Is there a relation? Econ. Model. 2021, 94, 1018–1029. [Google Scholar] [CrossRef]
- Guidolin, M.; La Ferrara, E. The economic effects of violent conflict: Evidence from asset market reactions. J. Peace Res. 2010, 47, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Ratti, R.A.; Vespignani, J.L. Oil price shocks and policy uncertainty: New evidence on the effects of US and non-US oil production. Energy Econ. 2017, 66, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Olanipekun, I.; Olasehinde-Williams, G.; Saint Akadiri, S. Gasoline prices and economic policy uncertainty: What causes what, and why does it matter? Evidence from 18 selected countries. Environ. Sci. Pollut. Res. 2019, 26, 15187–15193. [Google Scholar] [CrossRef] [PubMed]
- Akron, S.; Demir, E.; Díez-Esteban, J.M.; García-Gómez, C.D. Economic policy uncertainty and corporate investment: Evidence from the US hospitality industry. Tour. Manag. 2020, 77, 104019. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Mahalik, M.K.; Shahzad, S.J.H.; Hammoudeh, S. Does the environmental K uznets curve exist between globalization and energy consumption? G lobal evidence from the cross-correlation method. Int. J. Financ. Econ. 2019, 24, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Kompas, T.; Pham, V.H.; Che, T.N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 2018, 6, 1153–1173. [Google Scholar] [CrossRef] [Green Version]
- Coskuner, C.; Paskeh, M.K.; Olasehinde-Williams, G.; Akadiri, S.S. Economic and social determinants of carbon emissions: Evidence from organization of petroleum exporting countries. J. Public Aff. 2020, 20, e2092. [Google Scholar] [CrossRef]
- Hambira, W.L.; Saarinen, J.; Moses, O. Climate change policy in a world of uncertainty: Changing environment, knowledge, and tourism in Botswana. Afr. Geogr. Rev. 2020, 39, 252–266. [Google Scholar] [CrossRef]
- Huo, T.; Li, X.; Cai, W.; Zuo, J.; Jia, F.; Wei, H. Exploring the impact of urbanization on urban building carbon emissions in China: Evidence from a provincial panel data model. Sustain. Cities Soc. 2020, 56, 102068. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, Z.; Liu, C. Does economic policy uncertainty matter for carbon emission? Evidence from US sector level data. Environ. Sci. Pollut. Res. 2019, 26, 24380–24394. [Google Scholar] [CrossRef]
- Yu, J.; Shi, X.; Guo, D.; Yang, L. Economic policy uncertainty (EPU) and firm carbon emissions: Evidence using a China provincial EPU index. Energy Econ. 2021, 94, 105071. [Google Scholar] [CrossRef]
- Adams, S.; Adedoyin, F.; Olaniran, E.; Bekun, F.V. Energy consumption, economic policy uncertainty and carbon emissions; causality evidence from resource rich economies. Econ. Anal. Policy 2020, 68, 179–190. [Google Scholar] [CrossRef]
- Gill, A.R.; Hassan, S.; Viswanathan, K.K. Is democracy enough to get early turn of the environmental Kuznets curve in ASEAN countries? Energy Environ. 2019, 30, 1491–1505. [Google Scholar] [CrossRef]
- Shabir, M.; Ali, M.; Hashmi, S.H.; Bakhsh, S. Heterogeneous effects of economic policy uncertainty and foreign direct investment on environmental quality: Cross-country evidence. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Zakari, A. Energy consumption, economic expansion, and CO2 emission in the UK: The role of economic policy uncertainty. Sci. Total Environ. 2020, 738, 140014. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, S.; Ruan, S. Polycentric structure and carbon dioxide emissions: Empirical analysis from provincial data in China. J. Clean. Prod. 2021, 278, 123411. [Google Scholar] [CrossRef]
- Doğan, E.; Güler, C. How Economic Policy Uncertainty Affect Carbon Emissions: A Case of G-7 Countries. J. Econ. Bus. Issues 2021, 1, 33–38. [Google Scholar]
- Abbasi, K.R.; Adedoyin, F.F. Do energy use and economic policy uncertainty affect CO2 emissions in China? Empirical evidence from the dynamic ARDL simulation approach. Environ. Sci. Pollut. Res. 2021, 28, 23323–23335. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z. How does economic policy uncertainty affect CO2 emissions? A regional analysis in China. Environ. Sci. Pollut. Res. 2021, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring economic policy uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Atsu, F.; Adams, S. Energy consumption, finance, and climate change: Does policy uncertainty matter? Econ. Anal. Policy 2021, 70, 490–501. [Google Scholar] [CrossRef]
- Pirgaip, B.; Dinçergök, B. Economic policy uncertainty, energy consumption and carbon emissions in G7 countries: Evidence from a panel Granger causality analysis. Environ. Sci. Pollut. Res. 2020, 27, 30050–30066. [Google Scholar] [CrossRef]
- Sohail, M.T.; Xiuyuan, Y.; Usman, A.; Majeed, M.T.; Ullah, S. Renewable energy and non-renewable energy consumption: Assessing the asymmetric role of monetary policy uncertainty in energy consumption. Environ. Sci. Pollut. Res. 2021, 28, 31575–31584. [Google Scholar] [CrossRef]
- Amin, A.; Dogan, E. The role of economic policy uncertainty in the energy-environment nexus for China: Evidence from the novel dynamic simulations method. J. Environ. Manag. 2021, 292, 112865. [Google Scholar] [CrossRef]
- Anser, M.K.; Apergis, N.; Syed, Q.R. Impact of economic policy uncertainty on CO2 emissions: Evidence from top ten carbon emitter countries. Environ. Sci. Pollut. Res. 2021, 28, 29369–29378. [Google Scholar] [CrossRef] [PubMed]
- Ahir, H.; Bloom, N.; Furceri, D. The World Uncertainty Index. Available at SSRN 3275033. 2018. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3275033 (accessed on 10 October 2021).
- Shao, S.; Yang, L.; Yu, M.; Yu, M. Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994–2009. Energy Policy 2011, 39, 6476–6494. [Google Scholar] [CrossRef]
- Qi, X.; Wang, X.; Jin, X.; Wang, Z.M.; Zhang, B.; Wen, C. Will Policy Uncertainty Deteriorate Haze Pollution? A Spatial Spillover Perspective. Int. J. Environ. Res. Public Health 2021, 18, 10229. [Google Scholar] [CrossRef]
- Wen, J.; Hao, Y.; Feng, G.-F.; Chang, C.-P. Does government ideology influence environmental performance? Evidence based on a new dataset. Econ. Syst. 2016, 40, 232–246. [Google Scholar] [CrossRef]
- Wang, Q.-J.; Geng, Y.; Xia, X.-Q. Revisited Globalization’s Impact on Total Environment: Evidence Based on Overall Environmental Performance Index. Int. J. Environ. Res. Public Health 2021, 18, 11419. [Google Scholar] [CrossRef]
- Yang, Q.-C.; Feng, G.-F.; Chang, C.-P.; Wang, Q.-J. Environmental protection and performance: A bi-directional assessment. Sci. Total Environ. 2021, 774, 145747. [Google Scholar] [CrossRef]
- Verma, A.; Schmidt-Vogt, D.; De Alban, J.D.T.; Lim, C.L.; Webb, E.L. Drivers and mechanisms of forest change in the Himalayas. Glob. Environ. Chang. 2021, 68, 102244. [Google Scholar] [CrossRef]
- Bottero, A.; D’Amato, A.W.; Palik, B.J.; Bradford, J.B.; Fraver, S.; Battaglia, M.A.; Asherin, L.A. Density-dependent vulnerability of forest ecosystems to drought. J. Appl. Ecol. 2017, 54, 1605–1614. [Google Scholar] [CrossRef]
- Wang, Q.-J.; Feng, G.-F.; Wang, H.-J.; Chang, C.-P. The impacts of democracy on innovation: Revisited evidence. Technovation 2021, 108, 102333. [Google Scholar] [CrossRef]
- Usman, M.; Anwar, S.; Yaseen, M.R.; Makhdum, M.S.A.; Kousar, R.; Jahanger, A. Unveiling the dynamic relationship between agriculture value addition, energy utilization, tourism and environmental degradation in South Asia. J. Public Aff. 2021, e2712. [Google Scholar] [CrossRef]
- Dale, S. Urban bird community composition influenced by size of urban green spaces, presence of native forest, and urbanization. Urban Ecosyst. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Long, H.; de Jong, W.; Youn, Y.-C. Economic globalization, trade and forest transition-the case of nine Asian countries. For. Policy Econ. 2017, 76, 7–13. [Google Scholar] [CrossRef]
- Mahadevan, R.; Sun, Y. Effects of foreign direct investment on carbon emissions: Evidence from China and its Belt and Road countries. J. Environ. Manag. 2020, 276, 111321. [Google Scholar] [CrossRef]
- WDI. World Development Indicators; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- OECD. OECD Statistics; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Wang, Q.-J.; Feng, G.-F.; Chen, Y.E.; Wen, J.; Chang, C.-P. The impacts of government ideology on innovation: What are the main implications? Res. Policy 2019, 48, 1232–1247. [Google Scholar] [CrossRef]
- Ulucak, R.; Khan, S.U.D. Relationship between energy intensity and CO2 emissions: Does economic policy matter? Sustain. Dev. 2020, 28, 1457–1464. [Google Scholar]
- Al-Thaqeb, S.A.; Algharabali, B.G. Economic policy uncertainty: A literature review. J. Econ. Asymmetries 2019, 20, e00133. [Google Scholar] [CrossRef]
- Lin, S.; Sun, J.; Marinova, D.; Zhao, D. Effects of population and land urbanization on China’s environmental impact: Empirical analysis based on the extended STIRPAT model. Sustainability 2017, 9, 825. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.K.; Le, N.T.M. Environmental quality and the role of economic policy uncertainty, economic complexity, renewable energy, and energy intensity: The case of G7 countries. Environ. Sci. Pollut. Res. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
Variables | Definition | Source |
---|---|---|
Dependent variables | ||
CO2 | The total amount of CO2 emissions | WDI (2020) [47] |
Independent Variables | ||
Uncertainty | The world uncertainty index | Ahir et al., (2018) |
Control variables | ||
GDP | GDP per capita (constant 2010 US$) | WDI (2020) [47] |
POP | The number of total population, whose unit is million | WDI (2020) [47] |
GI | The number of patent applications about the environmental management | OECD (2020) [48] |
Density | Population density (people per sq. km of land area) | WDI (2020) [47] |
Aging | Population ages 65 and above (% of total population) | WDI (2020) [47] |
IND | Industry (including construction), value added (% of GDP) | WDI (2020) [47] |
Urban | Urban population (% of total population) | WDI (2020) [47] |
Trade | Share of the sum of exports and imports of goods and services to GDP | WDI (2020) [47] |
IFDI | Foreign direct investment, net inflows (% of GDP) | WDI (2020) [47] |
Variable | N | Mean | Min | P25 | Median | P75 | Max | S. D |
---|---|---|---|---|---|---|---|---|
CO2 | 4814 | 3.133 | 0.047 | 1.463 | 3.071 | 4.569 | 9.206 | 1.953 |
Uncertainty | 4814 | 0.127 | 0.000 | 0.044 | 0.100 | 0.185 | 0.851 | 0.112 |
GDP | 4814 | 8.201 | 5.306 | 6.979 | 8.117 | 9.292 | 11.431 | 1.501 |
POP | 4814 | 16.362 | 13.049 | 15.377 | 16.133 | 17.261 | 21.055 | 1.374 |
GI | 4814 | 0.996 | 0.000 | 0.000 | 0.000 | 1.386 | 8.203 | 1.738 |
Density | 4814 | 3.986 | 0.748 | 3.076 | 4.089 | 4.800 | 8.981 | 1.375 |
Aging | 4814 | 1.891 | 0.522 | 1.438 | 1.687 | 2.417 | 3.353 | 0.573 |
IND | 4814 | 3.309 | 0.835 | 3.110 | 3.316 | 3.518 | 4.486 | 0.383 |
Urban | 4814 | 3.843 | 1.347 | 3.532 | 3.996 | 4.295 | 4.615 | 0.581 |
Trade | 4814 | 4.146 | 0.155 | 3.836 | 4.153 | 4.504 | 6.095 | 0.575 |
IFDI | 4814 | 1.088 | 0.000 | 0.449 | 1.002 | 1.573 | 4.648 | 0.785 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
L. CO2 | 0.754 *** | 0.717 *** | 0.505 *** | 0.523 *** |
(23.278) | (17.718) | (9.612) | (9.848) | |
Uncertainty | 0.138 *** | 0.171 *** | 0.182 *** | 0.172 *** |
(4.008) | (4.208) | (3.688) | (3.586) | |
GDP | 0.313 *** | 0.430 *** | 0.465 *** | 0.496 *** |
(6.034) | (6.617) | (5.533) | (5.746) | |
POP | 0.522 *** | −1.657 *** | −7.231 *** | −6.725 *** |
(6.768) | (−3.210) | (−6.855) | (−6.604) | |
GI | −0.007 *** | −0.006 *** | −0.005 *** | −0.004 * |
(−3.168) | (−3.091) | (−2.603) | (−1.949) | |
Density | 1.975 *** | 7.262 *** | 6.771 *** | |
(3.848) | (7.103) | (6.752) | ||
Aging | −0.730 *** | −1.628 *** | −1.513 *** | |
(−3.858) | (−5.329) | (−5.231) | ||
IND | 0.008 | 0.007 | ||
(0.625) | (0.432) | |||
Urban | 0.354 *** | 0.276 *** | ||
(5.945) | (4.464) | |||
Trade | −0.004 | |||
(−0.260) | ||||
IFDI | −0.001 | |||
(−0.241) | ||||
Year FE | Yes | yes | yes | yes |
N | 4667 | 4667 | 4667 | 4667 |
AR (1) | −4.787 | −4.749 | −3.911 | −4.023 |
AR (1)-P | 0.000 | 0.000 | 0.000 | 0.000 |
AR (2) | −1.346 | −1.283 | −0.926 | −0.979 |
AR (2)-P | 0.178 | 0.200 | 0.354 | 0.327 |
Hansen-P | 0.954 | 0.946 | 0.983 | 0.974 |
(1) | (2) | (3) | |
---|---|---|---|
L. CO2 | 0.403 *** | 0.506 *** | 0.518 *** |
(3.313) | (8.662) | (9.758) | |
Uncertainty_trade | 0.059 ** | ||
(2.244) | |||
Uncertainty_absolute | 0.023 *** | ||
(3.390) | |||
Uncertainty_season | 0.083 * | ||
(1.667) | |||
GDP | 0.983 *** | 0.451 *** | 0.514 *** |
(5.543) | (5.259) | (5.878) | |
POP | 10.477 * | −6.987 *** | −6.327 *** |
(1.663) | (−5.943) | (−6.312) | |
GI | 0.002 | −0.005 ** | −0.004 * |
(0.608) | (−2.239) | (−1.839) | |
Density | −9.044 | 7.001 *** | 6.341 *** |
(−1.457) | (6.162) | (6.430) | |
Aging | −0.453 * | −1.438 *** | −1.541 *** |
(−1.658) | (−4.428) | (−5.263) | |
IND | −0.022 | 0.008 | 0.005 |
(−0.792) | (0.483) | (0.316) | |
Urban | −0.095 | 0.375 *** | 0.282 *** |
(−0.460) | (4.881) | (4.541) | |
Trade | 0.007 | 0.004 | −0.003 |
(0.537) | (0.265) | (−0.208) | |
IFDI | −0.005 | −0.002 | −0.001 |
(−1.198) | (−0.457) | (−0.181) | |
Year FE | yes | yes | yes |
N | 2818 | 4670 | 4667 |
AR (1) | −2.964 | −4.095 | −3.908 |
AR (1)-P | 0.003 | 0.000 | 0.000 |
AR (2) | −0.169 | −0.922 | −0.920 |
AR (2)-P | 0.866 | 0.356 | 0.357 |
Hansen-P | 0.733 | 0.926 | 0.960 |
(1) GHG | (2) CH4 | (3) N2O | |
---|---|---|---|
L.dependent | 0.440 *** | 0.416 *** | 0.345 *** |
(9.354) | (11.024) | (6.126) | |
Uncertainty | 0.293 ** | 0.103 ** | 0.025 ** |
(1.978) | (2.573) | (2.456) | |
GDP | 0.375 *** | 0.070 ** | 0.042 |
(4.960) | (1.973) | (0.570) | |
POP | 8.176 *** | 1.307 | 5.663 ** |
(3.469) | (1.269) | (2.249) | |
GI | −0.002 | −0.001 | −0.003 |
(−0.301) | (−0.909) | (−1.251) | |
Density | −7.379 *** | −0.678 | −5.199 ** |
(−3.038) | (−0.649) | (−2.092) | |
Aging | 0.200 | 0.189 ** | 0.106 |
(0.781) | (2.112) | (0.363) | |
IND | 0.053 * | 0.000 | 0.011 |
(1.785) | (0.019) | (0.712) | |
Urban | −0.379 *** | 0.049 | 0.134 ** |
(−5.771) | (1.333) | (2.530) | |
Trade | 0.013 | 0.007 | 0.030 *** |
(0.670) | (1.157) | (3.281) | |
IFDI | −0.002 | −0.001 | −0.003 |
(−0.622) | (−0.687) | (−1.202) | |
Year FE | yes | yes | yes |
N | 3021 | 3276 | 3276 |
AR (1) | −2.643 | −2.664 | −3.275 |
AR (1)-P | 0.008 | 0.008 | 0.001 |
AR (2) | 1.231 | 2.418 | 1.630 |
AR (2)-P | 0.218 | 0.016 | 0.103 |
Hansen-P | 0.403 | 0.388 | 0.323 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Uncertainty | 8.246 *** | |||
(6.003) | ||||
Uncertainty_trade | 0.021 ** | |||
(2.437) | ||||
Uncertainty_absolute | 0.003 ** | |||
(2.320) | ||||
Uncertainty_season | 0.004 *** | |||
(3.081) | ||||
GDP | 0.636 *** | 0.618 *** | 0.636 *** | 0.636 *** |
(6.743) | (6.601) | (6.724) | (6.748) | |
POP | 0.727 | 2.005 | 0.726 | 0.728 |
(0.936) | (1.648) | (0.932) | (0.936) | |
GI | 0.023 | 0.031 ** | 0.023 | 0.023 |
(1.292) | (2.597) | (1.293) | (1.290) | |
Density | 0.904 | −0.676 | 0.906 | 0.904 |
(1.232) | (−0.555) | (1.232) | (1.232) | |
Aging | 0.686 *** | 0.297 * | 0.686 *** | 0.686 *** |
(4.390) | (1.820) | (4.392) | (4.391) | |
IND | 0.072 | 0.093 ** | 0.071 | 0.072 |
(1.089) | (2.101) | (1.086) | (1.091) | |
Urban | 0.132 | 1.029 *** | 0.133 | 0.132 |
(0.670) | (5.492) | (0.675) | (0.669) | |
Trade | 0.082 | 0.008 | 0.082 * | 0.082 |
(1.653) | (0.317) | (1.663) | (1.652) | |
IFDI | −0.010 | 0.018 | −0.010 | −0.010 |
(−0.873) | (1.628) | (−0.867) | (−0.872) | |
Year FE | yes | yes | yes | yes |
Country FE | yes | yes | yes | yes |
Cons | −19.363 ** | −36.814 ** | −19.341 ** | −19.371 ** |
(−2.004) | (−2.457) | (−1.998) | (−2.005) | |
N | 4814 | 2956 | 4814 | 4814 |
R2 | 0.789 | 0.684 | 0.789 | 0.789 |
F | 19.50 | 21.38 | 19.57 | 19.35 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
L.CO2 | 0.433 *** | 0.608 *** | 0.522 *** | 0.524 *** |
(7.721) | (24.505) | (14.645) | (14.766) | |
Uncertainty | 0.026 *** | |||
(3.556) | ||||
Uncertainty_trade | 0.052 *** | |||
(5.262) | ||||
Uncertainty_absolute | 0.005 *** | |||
(2.979) | ||||
Uncertainty_season | 0.086 * | |||
(1.840) | ||||
GDP | 0.743 *** | 0.329 *** | 0.236 *** | 0.233 *** |
(7.941) | (12.833) | (5.075) | (4.960) | |
POP | −6.951 *** | −0.618 | −5.807 *** | −6.473 *** |
(−4.812) | (−0.652) | (−3.893) | (−3.639) | |
GI | −0.006 ** | 0.001 | −0.005 | −0.001 |
(−2.430) | (0.138) | (−0.414) | (−0.077) | |
Density | 7.644 *** | 1.742 * | 6.260 *** | 6.915 *** |
(5.134) | (1.856) | (4.685) | (4.311) | |
Aging | −0.744 *** | 0.288 *** | −0.455 ** | −0.487 ** |
(−2.586) | (3.519) | (−2.347) | (−2.398) | |
IND | −0.032 | 0.055 ** | −0.011 | −0.016 |
(−1.617) | (2.399) | (−0.225) | (−0.312) | |
Urban | 0.596 *** | 0.278 *** | 0.733 ** | 0.783 ** |
(4.498) | (3.382) | (2.295) | (2.141) | |
Trade | 0.007 | −0.004 | 0.008 | 0.007 |
(0.429) | (−0.810) | (1.081) | (0.990) | |
IFDI | −0.002 | 0.005 | 0.012 * | 0.012 * |
(−0.404) | (1.507) | (1.775) | (1.731) | |
Year FE | yes | yes | yes | yes |
N | 3556 | 2248 | 3556 | 3556 |
AR (1) | −4.540 | −5.508 | −5.610 | −5.627 |
AR (1)-P | 0.000 | 0.000 | 0.000 | 0.000 |
AR (2) | −0.716 | −0.900 | −0.822 | −0.761 |
AR (2)-P | 0.474 | 0.368 | 0.411 | 0.447 |
Hansen-P | 0.983 | 0.674 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-J.; Geng, Y.; Xia, X.-Q.; Wang, Q.-J. Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence from 137 Multinational Countries. Int. J. Environ. Res. Public Health 2022, 19, 4. https://doi.org/10.3390/ijerph19010004
Wang H-J, Geng Y, Xia X-Q, Wang Q-J. Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence from 137 Multinational Countries. International Journal of Environmental Research and Public Health. 2022; 19(1):4. https://doi.org/10.3390/ijerph19010004
Chicago/Turabian StyleWang, Hai-Jie, Yong Geng, Xi-Qiang Xia, and Quan-Jing Wang. 2022. "Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence from 137 Multinational Countries" International Journal of Environmental Research and Public Health 19, no. 1: 4. https://doi.org/10.3390/ijerph19010004
APA StyleWang, H. -J., Geng, Y., Xia, X. -Q., & Wang, Q. -J. (2022). Impact of Economic Policy Uncertainty on Carbon Emissions: Evidence from 137 Multinational Countries. International Journal of Environmental Research and Public Health, 19(1), 4. https://doi.org/10.3390/ijerph19010004