Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1
Abstract
:1. Introduction
2. Material and Methods
2.1. Genetic Analysis
2.2. Bioinformatics
2.3. Study Population
3. Results
3.1. Diabetes Mellitus
3.2. Other Clinical Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urano, F. Wolfram Syndrome: Diagnosis, Management, and Treatment. Curr. Diabetes Rep. 2016, 16, 6. [Google Scholar] [CrossRef] [Green Version]
- Delvecchio, M.; Iacoviello, M.; Pantaleo, A.; Resta, N. Clinical Spectrum Associated with Wolfram Syndrome Type 1 and Type 2: A Review on Genotype–Phenotype Correlations. Int. J. Environ. Res. Public Health 2021, 18, 4796. [Google Scholar] [CrossRef] [PubMed]
- Zalloua, P.A.; Azar, S.T.; Delépine, M.; Makhoul, N.J.; Blanc, H.; Sanyoura, M.; Lavergne, A.; Stankov, K.; Lemainque, A.; Baz, P.; et al. WFS1 mutations are frequent monogenic causes of juvenile-onset diabetes mellitus in Lebanon. Hum. Mol. Genet. 2008, 17, 4012–4021. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Tanabe, K.; Inoue, H.; Okuya, S.; Ohta, Y.; Akiyama, M.; Taguchi, A.; Kora, Y.; Okayama, N.; Yamada, Y.; et al. Wolfram Syndrome in the Japanese Population; Molecular Analysis of WFS1 Gene and Characterization of Clinical Features. PLoS ONE 2014, 9, e106906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganie, M.A.; Laway, B.A.; Nisar, S.; Wani, M.M.; Khurana, M.L.; Ahmad, F.; Ahmed, S.; Gupta, P.; Ali, I.; Shabir, I.; et al. Presentation and clinical course of Wolfram (DIDMOAD) syndrome from North India. Diabet. Med. 2011, 28, 1337–1342. [Google Scholar] [CrossRef]
- Barrett, T.G.; Bundey, S.E.; Macleod, A.F. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 1995, 346, 1458–1463. [Google Scholar] [CrossRef]
- Fraser, F.C.; Gunn, T. Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome? J. Med. Genet. 1977, 14, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Rigoli, L.; Bramanti, P.; Di Bella, C.; De Luca, F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr. Res. 2018, 83, 921–929. [Google Scholar] [CrossRef]
- Inoue, H.; Tanizawa, Y.; Wasson, J.; Behn, P.; Kalidas, K.; Bernal-Mizrachi, E.; Mueckler, M.; Marshall, H.; Donis-Keller, H.; Crock, P.; et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 1998, 20, 143–148. [Google Scholar] [CrossRef]
- Moosajee, M.; Yu-Wai-Man, P.; Rouzier, C.; Bitner-Glindzicz, M.; Bowman, R. Clinical utility gene card for: Wolfram syndrome. Eur. J. Hum. Genet. 2016, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; Wu, C.-Y.; Kirby, R.; Kao, C.-H.; Tsai, T.-F. A role for the CISD2 gene in lifespan control and human disease. Ann. N. Y. Acad. Sci. 2010, 1201, 58–64. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Kao, C.-H.; Wang, C.-H.; Chen, Y.T.; Wu, C.-Y.; Tsai, C.-Y.; Liu, F.-C.; Yang, C.-W.; Wei, Y.-H.; Hsu, M.-T.; et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009, 23, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, F.; Salzano, G.; Di Bella, C.; Aversa, T.; Pugliatti, F.; Cara, S.; Valenzise, M.; De Luca, F.; Rigoli, L. Phenotypical and genotypical expression of Wolfram syndrome in 12 patients from a Sicilian district where this syndrome might not be so infrequent as generally expected. J. Endocrinol. Investig. 2014, 37, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Rigoli, L.; Aloi, C.; Salina, A.; Di Bella, C.; Salzano, G.; Caruso, R.; Mazzon, E.; Maghnie, M.; Patti, G.; D’Annunzio, G.; et al. Wolfram syndrome 1 in the Italian population: Genotype–phenotype correlations. Pediatr. Res. 2019, 87, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Abreu, D.; Urano, F. Current Landscape of Treatments for Wolfram Syndrome. Trends Pharmacol. Sci. 2019, 40, 711–714. [Google Scholar] [CrossRef] [Green Version]
- Zmyslowska, A.; Malkowski, B.; Fendler, W.; Borowiec, M.; Antosik, K.; Gnyś, P.; Baranska, D.; Mlynarski, W. Central Nervous System PET-CT Imaging Reveals Regional Impairments in Pediatric Patients with Wolfram Syndrome. PLoS ONE 2014, 9, e115605. [Google Scholar] [CrossRef] [PubMed]
- d’Annunzio, G.; Minuto, N.; D’Amato, E.; de Toni, T.; Lombardo, F.; Pasquali, L.; Lorini, R. Wolfram syndrome (diabetes insipidus, diabetes, optic atrophy, and deafness): Clinical and genetic study. Diabetes Care 2008, 31, 1743–1745. [Google Scholar] [CrossRef] [Green Version]
- Cano, A.; Rouzier, C.; Monnot, S.; Chabrol, B.; Conrath, J.; Lecomte, P.; Delobel, B.; Boileau, P.; Valero, R.; Procaccio, V.; et al. Identification of novel mutations inWFS1 and genotype–phenotype correlation in Wolfram syndrome. Am. J. Med. Genet. Part A 2007, 143A, 1605–1612. [Google Scholar] [CrossRef]
- Hoekel, J.; Chisholm, S.A.; Al-Lozi, A.; Hershey, T.; Tychsen, L. Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2014, 18, 461–465.e1. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Kanekura, K.; Hara, T.; Mahadevan, J.; Spears, L.D.; Oslowski, C.M.; Martinez, R.; Yamazaki-Inoue, M.; Toyoda, M.; Neilson, A.; et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc. Natl. Acad. Sci. USA 2014, 111, E5292–E5301. [Google Scholar] [CrossRef] [Green Version]
- Bababeygy, S.R.; Wang, M.Y.; Khaderi, K.R.; Sadun, A.A. Visual improvement with the use of idebenone in the treatment of Wolfram syndrome. J. Neuro-Ophthalmol. 2012, 32, 386–389. [Google Scholar] [CrossRef]
- Berry, V.; Gregory-Evans, C.; Emmett, W.; Waseem, N.; Raby, J.; Prescott, D.; Moore, A.T.; Bhattacharya, S.S. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur. J. Hum. Genet. 2013, 21, 1356–1360. [Google Scholar] [CrossRef] [Green Version]
- de Heredia, M.L.; Clèries, R.; Nunes, V. Genotypic classification of patients with Wolfram syndrome: Insights into the natural history of the disease and correlation with phenotype. Genet. Med. 2013, 15, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Wolfram syndrome: Important implications for pediatricians and pediatric endocrinologists. Pediatr. Diabetes 2010, 11, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K. Otologic findings of DIDMOAD syndrome. Am. J. Otol. 1991, 12, 57–60. [Google Scholar] [PubMed]
- Karzon, R.K.; Hullar, T.E. Audiologic and Vestibular Findings in Wolfram Syndrome. Ear Hear. 2013, 34, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Karzon, R.; Narayanan, A.; Chen, L.; Lieu, J.E.C.; Hershey, T. Longitudinal hearing loss in Wolfram syndrome. Orphanet. J. Rare Dis. 2018, 13, 102. [Google Scholar] [CrossRef]
- Bespalova, I.N.; Van Camp, G.; Bom, S.J.; Brown, D.J.; Cryns, K.; DeWan, A.T. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum. Mol. Genet. 2001, 10, 2501–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnycastle, L.L.; Chines, P.S.; Hara, T.; Huyghe, J.R.; Swift, A.J.; Heikinheimo, P.; Mahadevan, J.; Peltonen, S.; Huopio, H.; Nuutila, P.; et al. Autosomal Dominant Diabetes Arising from a Wolfram Syndrome 1 Mutation. Diabetes 2013, 62, 3943–3950. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, S.G.; Ishigaki, S.; Oslowski, C.M.; Lu, S.; Lipson, K.L.; Ghosh, R.; Hayashi, E.; Ishihara, H.; Oka, Y.; Permutt, M.A.; et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Investig. 2010, 120, 744–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohayem, J.; Ehlers, C.; Wiedemann, B.; Holl, R.; Oexle, K.; Kordonouri, O.; Salzano, G.; Meissner, T.; Burger, W.; Schober, E.; et al. Diabetes and neurodegeneration in Wolfram syndrome: A multicenter study of phenotype and genotype. Diabetes Care 2011, 34, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Tranebjærg, L.; Barrett, T.; Rendtorff, N.D. WFS1 Wolfram Syndrome Spectrum Disorder; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Mirzaa, G., Eds.; GeneReviews® [Internet]; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Cremers, C.W.; Wijdeveld, P.G.; Pinckers, A.J. Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). A review of 88 cases from the literature with personal observations on 3 new patients. Acta Paediatr. Scand. Suppl. 1977, 264, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; E Bundey, S. Wolfram (DIDMOAD) syndrome. J. Med. Genet. 1997, 34, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Tekgul, S.; Oge, O.; Simsek, E.; Yordam, N.; Kendi, S. Urological Manifestations of the Wolfram Syndrome: Observations in 14 Patients. J. Urol. 1999, 161, 616–617. [Google Scholar] [CrossRef]
- Swift, R.G.; O Perkins, D.; Chase, C.L.; Sadler, D.B.; Swift, M. Psychiatric disorders in 36 families with Wolfram syndrome. Am. J. Psychiatry 1991, 148, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.; Swift, R.G. Wolframin mutations and hospitalization for psychiatric illness. Mol. Psychiatry 2005, 10, 799–803. [Google Scholar] [CrossRef] [Green Version]
- Swift, R.G.; Polymeropoulos, M.H.; Torres, R.; Swift, M. Predisposition of Wolfram syndrome heterozygotes to psychiatric illness. Mol. Psychiatry 1998, 3, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, A.N.; Reiersen, A.M.; Buttlaire, A.; Al-Lozi, A.; Doty, T.; Marshall, B.A.; Hershey, T. Washington University Wolfram Syndrome Research Group Selective cognitive and psychiatric manifestations in Wolfram Syndrome. Orphanet J. Rare Dis. 2015, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Hua, H.; Foo, K.; Martinez, H.; Watanabe, K.; Zimmer, M.; Kahler, D.J.; Freeby, M.; Chung, W.; LeDuc, C.; et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 2014, 63, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Gharanei, S.; Zatyka, M.; Astuti, D.; Fenton, J.; Sik, A.; Nagy, Z.; Barrett, T.G. Vacuolar-type H+-ATPase V1A subunit is a molecular partner of Wolfram syndrome 1 (WFS1) protein, which regulates its expression and stability. Hum. Mol. Genet. 2012, 22, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Toots, M.; Seppa, K.; Jagomäe, T.; Koppel, T.; Pallase, M.; Heinla, I.; Terasmaa, A.; Plaas, M.; Vasar, E. Preventive treatment with liraglutide protects against development of glucose intolerance in a rat model of Wolfram syndrome. Sci. Rep. 2018, 8, 10183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, M.; Tanabe, K.; Amo-Shiinoki, K.; Hatanaka, M.; Morii, T.; Takahashi, H.; Seino, S.; Yamada, Y.; Tanizawa, Y. Activation of GLP-1 receptor signalling alleviates cellular stresses and improves beta cell function in a mouse model of Wolfram syndrome. Diabetologia 2018, 61, 2189–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urano, F. Wolfram Syndrome iPS Cells: The First Human Cell Model of Endoplasmic Reticulum Disease. Diabetes 2014, 63, 844–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Gene | Exon | Type of Mutation | Nucleotide Change | Protein Effect | Protein Domain | Zygosity | Known/Novel |
---|---|---|---|---|---|---|---|---|
1 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
2 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
3 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
4 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
5 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
6 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
7 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
8 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
9 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
10 | WFS1 | 5/8c | Deletion; missense | c532_537del6; c1673G>A | K178_A179del; R558H | CD1; CD4 | Compound heterozygote | Known |
11 | WFS1 | 8b/IVS6 | Missense; splice | c.1328G>T; c.712+16G>A | S443I; – | TM4; - | Compound heterozygote | Known |
12 | WFS1 | 8b/8c | Frameshift/truncation; deletion | c1230delCTCT; c.1246delTTC | L410del-fsX441; 516del | TM3-TM4; ER3 | Heterozygote | Known |
13 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
14 | WFS1 | 8b | Frameshift/truncation | c1362_1377del16 | Y454_L459del_fsX454 | CD3 | Homozygote | Known |
Number of WS1 Patients. | 14 |
Sex | |
Female | 6 (42.9%) |
Male | 8 (57.1%) |
Age at WS1 diagnosis (years) | 12.7 ± 3.4 |
Diabetes mellitus | |
Number of patients | 14 (100%) |
Mean age at diagnosis (years) | 5.9 ± 4.3 |
Age range at diagnosis (min–max years) | 1–18 |
Diabetic ketoacidosis at onset | 2 (14.3%) |
Glycated hemoglobin at diagnosis (%) | 10.3 ± 2.1 |
Optic atrophy | |
Number of patients | 14 (100%) |
Mean age at diagnosis (years) | 12.7 ± 3.4 |
Age range at diagnosis (min–max years) | 6–19 |
Diabetes insipidus | |
Number of patients | 12 (85.7%) |
Mean age at diagnosis (years) | 14.2 ± 3.9 |
Age range at diagnosis (min–max years) | 10–22 |
Deafness | |
Number of patients | 12 (85.7%) |
Mean age at diagnosis (years) | 12.4 ± 5.4 |
Age range at diagnosis (min–max years) | 6–25 |
Other clinical findings | |
Urology defects | 3 (21.4%) |
Neuropsychiatric disorders | 5 (35.7%) |
Hashimoto’s thyroiditis | 3 (21.4%) |
Hypergonadotropic hypogonadism | 1 (7.1%) |
Hypogonadotropic hypogonadism | 1 (7.1%) |
Bilateral cataract | 2 (14.3%) |
Congenital heart defect | 2 (14.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salzano, G.; Rigoli, L.; Valenzise, M.; Chimenz, R.; Passanisi, S.; Lombardo, F. Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1. Int. J. Environ. Res. Public Health 2022, 19, 520. https://doi.org/10.3390/ijerph19010520
Salzano G, Rigoli L, Valenzise M, Chimenz R, Passanisi S, Lombardo F. Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1. International Journal of Environmental Research and Public Health. 2022; 19(1):520. https://doi.org/10.3390/ijerph19010520
Chicago/Turabian StyleSalzano, Giuseppina, Luciana Rigoli, Mariella Valenzise, Roberto Chimenz, Stefano Passanisi, and Fortunato Lombardo. 2022. "Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1" International Journal of Environmental Research and Public Health 19, no. 1: 520. https://doi.org/10.3390/ijerph19010520
APA StyleSalzano, G., Rigoli, L., Valenzise, M., Chimenz, R., Passanisi, S., & Lombardo, F. (2022). Clinical Peculiarities in a Cohort of Patients with Wolfram Syndrome 1. International Journal of Environmental Research and Public Health, 19(1), 520. https://doi.org/10.3390/ijerph19010520