The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. 3-min Incremental Step-In-Place Tests
2.4. Cardiopulmonary Exercise Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Top Ten Causes of Death. 9 December 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 5 November 2021).
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M. American Heart Association Young Hearts Athero, Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. Cardiorespiratory fitness in youth: An important marker of health: A scientific statement from the American heart association. Circulation 2020, 142, e101–e118. [Google Scholar] [PubMed]
- Cheng, J.C.; Chiu, C.Y.; Su, T.J. Training and evaluation of human cardiorespiratory endurance based on a fuzzy algorithm. Int. J. Environ. Res. Public Health 2019, 16, 2390. [Google Scholar] [CrossRef] [Green Version]
- Sartor, F.; Vernillo, G.; De Morree, H.M.; Bonomi, A.G.; La Torre, A.; Kubis, H.P.; Veicsteinas, A. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Med. 2013, 43, 865–873. [Google Scholar] [CrossRef]
- Willis, B.L.; Gao, A.; Leonard, D.; DeFina, L.F.; Berry, J.D. Midlife fitness and the development of chronic conditions in later life. Arch. Intern. Med. 2012, 172, 1333–1340. [Google Scholar] [CrossRef]
- Bachmann, J.M.; DeFina, L.F.; Franzini, L.; Gao, A.; Leonard, D.S.; Cooper, K.H.; Berry, J.D.; Willis, B.L. Cardiorespiratory fitness in middle age and health care costs in later life. J. Am. Coll. Cardiol. 2015, 66, 1876–1885. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. Clinical exercise testing and interpretation. In ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2016; pp. 79–142. [Google Scholar]
- Fuller, A.; Okwose, N.; Scragg, J.; Eggett, C.; Luke, P.; Bandali, A.; Velicki, R.; Greaves, L.; MacGowan, G.A.; Jakovljevic, D.G. The effect of age on mechanisms of exercise tolerance: Reduced arteriovenous oxygen difference causes lower oxygen consumption in older people. Exp. Gerontol. 2021, 149, 111340. [Google Scholar] [CrossRef]
- Pandey, A.; Kraus, W.E.; Brubaker, P.H.; Kitzman, D.W. Healthy aging and cardiovascular function: Invasive hemodynamics during rest and exercise in 104 healthy volunteers. JACC Heart Fail. 2020, 8, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Skattebo, Ø.; Calbet, J.A.; Rud, B.; Capelli, C.; Hallén, J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol. 2020, 230, e13486. [Google Scholar] [CrossRef] [PubMed]
- Collis, T.; Devereux, R.B.; Roman, M.J.; de Simone, G.; Yeh, J.L.; Howard, B.V.; Fabsitz, R.R.; Welty, T.K. Relations of stroke volume and cardiac output to body composition: The strong heart study. Circulation 2001, 103, 820–825. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, N.; Bertucci, D.R.; de Sant’Ana, G.M.; Padua, P.; da Rosa, D.M. Incremental and decremental cardiopulmonary exercise testing protocols produce similar maximum oxygen uptake in athletes. Sci. Rep. 2021, 11, 13118. [Google Scholar] [CrossRef]
- Dourado, V.Z.; Nishiaka, R.K.; Simões, M.S.M.P.; Lauria, V.T.; Tanni, S.E.; Godoy, I.; Gagliardi, A.R.T.; Romiti, M.; Arantes, R.L. Classification of cardiorespiratory fitness using the six-minute walk test in adults: Comparison with cardiopulmonary exercise testing. Pulmonology 2021, 27, 500–508. [Google Scholar] [CrossRef]
- Kaminsky, L.A.; Arena, R.; Myers, J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: Data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin. Proc. 2015, 90, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Al-Mallah, M.H.; Juraschek, S.P.; Whelton, S.; Dardari, Z.A.; Ehrman, J.K.; Michos, E.D.; Blumenthal, R.S.; Nasir, K.; Qureshi, W.T.; Brawner, C.A. Sex differences in cardiorespiratory fitness and all-cause mortality: The Henry Ford ExercIse Testing (FIT) Project. Mayo Clin. Proc. 2016, 91, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Evans, H.J.; Ferrar, K.E.; Smith, A.E.; Parfitt, G.; Eston, R.G. A systematic review of methods to predict maximal oxygen uptake from submaximal, open circuit spirometry in healthy adults. J. Sci. Med. Sport 2015, 18, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Peterman, J.E.; Harber, M.P.; Imboden, M.T.; Whaley, M.H.; Fleenor, B.S.; Myers, J.; Arena, R.; Kaminsky, L.A. Accuracy of Exercise-based Equations for Estimating Cardiorespiratory Fitness. Med. Sci. Sports Exerc. 2021, 53, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, J.D.; Brinson, S.J.; Pettitt, R.W.; Schroeder, E.T.; Sawyer, B.J.; Jo, E. Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports 2020, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar]
- Van Kieu, N.T.; Jung, S.-J.; Shin, S.-W.; Jung, H.-W.; Jung, E.-S.; Won, Y.H.; Kim, Y.-G.; Chae, S.-W. The Validity of the YMCA 3-Minute Step Test for Estimating Maximal Oxygen Uptake in Healthy Korean and Vietnamese Adults. J. Lifestyle Med. 2020, 10, 21–29. [Google Scholar] [CrossRef]
- Lee, O.; Lee, S.; Kang, M.; Mun, J.; Chung, J. Prediction of maximal oxygen consumption using the Young Men’s Christian Association-step test in Korean adults. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 119, 1245–1252. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the sixminute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Dunn, A.; Marsden, D.L.; Barker, D.; van Vliet, P.; Spratt, N.J.; Callister, R. Evaluation of three measures of cardiorespiratory fitness in independently ambulant stroke survivors. Physiother. Theory Pract. 2019, 35, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.P. A Review of Various Step Test Protocols for Use in Assessing Aerobic Fitness in Schools. Asian J. Phys. Educ. Recreat. 2012, 18, 74–81. [Google Scholar] [CrossRef]
- Sopalard, M.; Leelarungrayub, J.; Klaphajone, J. Variation of knee angle and leg length for predicting VO2max in healthy male volunteers using the Queen’s College step test. J. Phys. Educ. Sport 2016, 16, 275–280. [Google Scholar]
- Elsaidy, W.S.I.M. Evaluating the validity and reliability of Harvard step test to predict VO2max in terms of the step height according to the knee joint angle. Theor. Appl. Int. Ed. 2011, 1, 126–132. [Google Scholar]
- Yan, L.; Croce, R.; Horvat, M.; Roswal, G.; Fallaize, A.; Love, K. Determination of Cardiovascular Functioning in Chinese Adults with Intellectual Disabilities using the 3-Minute Step Test. Clin. Kinesiol. 2019, 73, 8–14. [Google Scholar]
- Bohannon, R.W.; Bubela, D.J.; Wang, Y.C.; Magasi, S.S.; Gershon, R.C. Six-minute walk test versus three-minute step test for measuring functional endurance. J. Strength Cond. Res. 2015, 29, 3240–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutner, F.; Ubrich, R.; Zachariae, S.; Engel, C.; Sandri, M.; Teren, A.; Gielen, S. Validation of a brief step-test protocol for estimation of peak oxygen uptake. Eur. J. Prev. Cardiol. 2015, 22, 503–512. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Huang, C.-Y.; Wu, H.-J.; Kan, N.-W.; Ho, C.-S.; Huang, C.-C.; Chen, H.-T. Predicting maximal oxygen uptake from a 3-minute progressive knee-ups and step test. PeerJ 2021, 9, e10831. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chang, C.H.; Chung, Y.C.; Wu, H.J.; Kan, N.W.; ChangChien, W.S.; Ho, C.S.; Huang, C.C. Development and validation of 3 min incremental step-in-place test for predicting maximal oxygen uptake in home settings: A submaximal exercise study to assess cardiorespiratory fitness. Int. J. Environ. Res. Public Health 2021, 18, 10750. [Google Scholar] [CrossRef]
- Miller, R.M.; Chambers, T.L.; Burns, S.P.; Godard, M.P. Validating inbody®570 multi-frequency bioelectrical impedance analyzer versus DXA for body fat percentage analysis. Med. Sci. Sports Exerc. 2016, 48, 991. [Google Scholar] [CrossRef] [Green Version]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Matsuo, T.; So, R.; Takahashi, M. Estimating cardiorespiratory fitness from heart rates both during and after stepping exercise: A validated simple and safe procedure for step tests at worksites. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 120, 2445–2454. [Google Scholar] [CrossRef]
- Cao, Z.B.; Miyatake, N.; Higuchi, M.; Miyachi, M.; Ishikawa-Takata, K.; Tabata, I. Predicting VO2max with an objectively measured physical activity in Japanese women. Med. Sci. Sports Exerc. 2010, 42, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.H.; Yang, H.I.; Kim, D.I.; Gonzales, T.I.; Brage, S.; Jeon, J.Y. Validation of Submaximal Step Tests and the 6-Min Walk Test for Predicting Maximal Oxygen Consumption in Young and Healthy Participants. Int. J. Environ. Res. Public Health 2019, 16, 4858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facioli, T.P.; Philbois, S.V.; Gastaldi, A.C.; Almeida, D.S.; Maida, K.D.; Rodrigues, J.A.; Sánchez-Delgado, J.C.; Souza, H.C. Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise. Sci. Rep. 2021, 11, 3620. [Google Scholar] [CrossRef]
- Sartor, F.; Bonato, M.; Papini, G.; Bosio, A.; Mohammed, R.A.; Bonomi, A.G.; Moore, J.P.; Merati, G.; La Torre, A.; Kubis, H.P. A 45-second self-test for cardiorespiratory fitness: Heart rate-based estimation in healthy individuals. PLoS ONE 2016, 11, e0168154. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.-B.; Miyatake, N.; Aoyama, T.; Higuchi, M.; Tabata, I. Prediction of maximal oxygen uptake from a 3-minute walk based on gender, age, and body composition. J. Phys. Act. Health 2013, 10, 280–287. [Google Scholar] [CrossRef]
- Matsuo, T.; So, R.; Takahashi, M. Workers’ physical activity data contribute to estimating maximal oxygen consumption: A questionnaire study to concurrently assess workers’ sedentary behavior and cardiorespiratory fitness. BMC Public Health 2020, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Crouch, R.H. Two-minute step test of exercise capacity: Systematic review of procedures, performance, and clinimetric properties. J. Geriatr. Phys. Ther. 2019, 42, 105–112. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Training Group (N = 140) | Testing Group (N = 60) | Total (N = 200) | Effect Size |
---|---|---|---|---|
Age (years) | 44.13 ± 9.63 | 42.77 ± 11.12 | 43.72 ± 10.09 | 0.13 |
Gender, N (%) | ||||
Men | 70 (50) | 30 (50) | 100 (50) | |
Women | 70 (50) | 30 (50) | 100 (50) | |
Height (cm) | 165.96 ± 7.84 | 166.48 ± 8.65 | 166.12 ± 8.07 | −0.06 |
Body mass (kg) | 67.30 ± 12.98 | 68.48 ± 13.29 | 67.65 ± 13.05 | −0.09 |
PBF (%) | 25.66 ± 6.77 | 26.64 ± 7.49 | 25.96 ± 6.99 | −0.14 |
BMI (kg/m2) | 24.24 ± 3.32 | 24.58 ± 3.47 | 24.34 ± 3.36 | −0.10 |
VO2max (mL·kg−1·min−1) | ||||
Men | 37.35 ± 6.60 | 36.85 ± 7.11 | 37.20 ± 6.72 | 0.07 |
Women | 31.10 ± 5.76 | 31.06 ± 5.77 | 31.09 ± 5.74 | 0.01 |
Training Group | Testing Group | p | Effect Size | |||||
---|---|---|---|---|---|---|---|---|
Total (N =140) | Women (N = 70) | Men (N = 70) | Total (N = 60) | Women (N = 30) | Men (N = 30) | |||
3MISP30s | ||||||||
HR0 (bpm) | 83 ± 11 | 84 ± 11 | 81 ± 12 | 82 ± 11 | 85 ± 11 | 79 ± 12 | 0.654 | 0.09 |
HR1 (bpm) | 109 ± 13 | 113 ± 13 | 105 ± 11 | 109 ± 14 | 113 ± 15 | 104 ± 11 | 0.847 | 0.00 |
HR2 (bpm) | 131 ±14 | 136 ± 15 | 127 ± 12 | 130 ± 15 | 136 ± 15 | 125 ± 13 | 0.649 | 0.07 |
HR3 (bpm) | 155 ± 14 | 157 ± 15 | 152 ±13 | 157 ± 13 | 160 ± 12 | 154 ± 13 | 0.268 | −0.15 |
HR4 (bpm) | 126 ± 17 | 131 ± 18 | 121 ± 16 | 130 ± 16 | 134 ± 15 | 126 ± 16 | 0.088 | −0.24 |
ΔHR3−HR4 (bpm) | 29 ± 8 | 27 ± 8 | 31 ± 8 | 27 ± 9 | 26 ± 7 | 28 ± 10 | 0.154 | 0.23 |
3MISP60s | ||||||||
HR0 (bpm) | 83 ± 11 | 85 ± 11 | 82 ± 11 | 82 ± 11 | 85 ± 11 | 80 ± 11 | 0.614 | 0.09 |
HR1 (bpm) | 109 ± 12 | 111 ± 13 | 106 ± 11 | 109 ± 13 | 113 ± 13 | 104 ± 11 | 0.926 | 0.00 |
HR2 (bpm) | 128 ± 14 | 132 ± 15 | 125 ± 11 | 128 ± 14 | 132 ± 14 | 124 ± 13 | 0.884 | 0.00 |
HR3 (bpm) | 150 ± 15 | 153 ± 16 | 148 ± 13 | 153 ± 14 | 156 ± 15 | 150 ± 14 | 0.255 | −0.21 |
HR4 (bpm) | 121 ± 18 | 125 ± 19 | 118 ± 15 | 125 ± 18 | 130 ± 19 | 120 ± 16 | 0.171 | −0.22 |
ΔHR3−HR4 (bpm) | 29 ± 8 | 28 ± 8 | 30 ± 7 | 28 ± 8 | 26 ± 8 | 31 ± 8 | 0.507 | 0.13 |
VO2max (mL·kg−1·min−1) | 3MISP30s Model | 3MISP60s Model | ||||
---|---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | p | Unstandardized Coefficients | Standardized Coefficients | p | |
Constant | 47.534 | <0.001 | 49.357 | <0.001 | ||
Age (years) | −0.131 | −0.182 | 0.001 | −0.143 | −0.199 | <0.001 |
Gender (women = 0, men = 1) | 2.506 | 0.182 | 0.003 | 3.084 | 0.224 | <0.001 |
PBF (%) | −0.361 | −0.353 | <0.001 | −0.348 | −0.340 | <0.001 |
HR0 (bpm) | −0.085 | −0.139 | 0.033 | −0.107 | −0.173 | 0.007 |
∆HR3−HR4 (bpm) | 0.260 | 0.318 | <0.001 | 0.259 | 0.290 | <0.001 |
F | 48.571 | 48.401 | ||||
P | <0.001 | <0.001 | ||||
R2 | 0.644 | 0.644 | ||||
Adjusted R2 | 0.631 | 0.630 | ||||
SEE (mL·kg−1·min−1) | 4.2043 | 4.2090 | ||||
SEE% | 12.283 | 12.297 | ||||
R2p | 0.646 | 0.651 | ||||
SEEp | 4.180 | 4.134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chang, C.-H.; Ho, C.-A.; Wu, C.-Y.; Yeh, H.-C.; Chan, Y.-S.; Cheng, J.-Y.; ChangChien, W.-S.; Ho, C.-S. The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults. Int. J. Environ. Res. Public Health 2022, 19, 563. https://doi.org/10.3390/ijerph19010563
Li F, Chang C-H, Ho C-A, Wu C-Y, Yeh H-C, Chan Y-S, Cheng J-Y, ChangChien W-S, Ho C-S. The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults. International Journal of Environmental Research and Public Health. 2022; 19(1):563. https://doi.org/10.3390/ijerph19010563
Chicago/Turabian StyleLi, Fang, Chun-Hao Chang, Chia-An Ho, Cheng-You Wu, Hung-Chih Yeh, Yuan-Shuo Chan, Jia-Yu Cheng, Wen-Sheng ChangChien, and Chin-Shan Ho. 2022. "The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults" International Journal of Environmental Research and Public Health 19, no. 1: 563. https://doi.org/10.3390/ijerph19010563
APA StyleLi, F., Chang, C. -H., Ho, C. -A., Wu, C. -Y., Yeh, H. -C., Chan, Y. -S., Cheng, J. -Y., ChangChien, W. -S., & Ho, C. -S. (2022). The Determination of Step Frequency in 3-min Incremental Step-in-Place Tests for Predicting Maximal Oxygen Uptake from Heart Rate Response in Taiwanese Adults. International Journal of Environmental Research and Public Health, 19(1), 563. https://doi.org/10.3390/ijerph19010563