Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Nucleic Acids Extraction
2.3. SARS-CoV-2 Detection by Real-Time RT-PCR
2.4. SARS-CoV-2 Detection in Environmental Samples by Droplet Digital RT-PCR (dd RT-PCR)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med. 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Qahtani, A.A. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Emergence, history, basic and clinical aspects. Saudi J. Biol. Sci. 2020, 27, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Bio Med. Atenei Parm. 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C.Y.H.; Li, Y.; Katoshevski, D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 2009, 40, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Stadnytskyi, V.; Bax, C.E.; Bax, A.; Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 11875–11877. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.L.; Morwitzer, M.J.; Creager, H.M.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.M.; Schnaubelt, E.R.; Broadhurst, M.J.; et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732. [Google Scholar] [CrossRef]
- Kenneth McIntosh, M.; Martin, S.; Hirsch, M.; Allyson Bloom, M. Coronavirus disease 2019 (COVID-19). UpToDate Hirsch MS Bloom 2020, 5, 873. [Google Scholar]
- Kraay, A.N.M.; Hayashi, M.A.L.; Hernandez-Ceron, N.; Spicknall, I.H.; Eisenberg, M.C.; Meza, R.; Eisenberg, J.N.S. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Infect. Dis. 2018, 18, 540. [Google Scholar]
- Rusin, P.; Maxwell, S.; Gerba, C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J. Appl. Microbiol. 2002, 93, 585–592. [Google Scholar] [CrossRef]
- Mohammad, N.S.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pakistan, J. Med. Sci. 2022, 38, 219–226. [Google Scholar] [CrossRef]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; Freeburger, D.; et al. SARS-CoV-2 is rapidly inactivated at high temperature. Environ. Chem. Lett. 2021, 19, 1773–1777. [Google Scholar] [CrossRef]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere 2020, 5, e00441-20. [Google Scholar] [CrossRef]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Freed, D.C.; He, X.; Li, F.; Tang, A.; Cox, K.S.; Dubey, S.A.; Cole, S.; Medi, M.B.; Liu, Y.; et al. A replication-defective human cytomegalovirus vaccine for prevention of congenital infection. Sci. Transl. Med. 2016, 8, 747–766. [Google Scholar] [CrossRef]
- Raiteux, J.; Eschlimann, M.; Marangon, A.; Rogée, S.; Dadvisard, M.; Taysse, L.; Larigauderie, G. Inactivation of SARS-CoV-2 by Simulated Sunlight on Contaminated Surfaces. Microbiol. Spectr. 2021, 9, e00333-21. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Bonil, L.; Lingas, G.; Coupeau, D.; Lucet, J.C.; Guedj, J.; Visseaux, B.; Muylkens, B. Survival of SARS-CoV-2 on non-porous materials in an experimental setting representative of fomites. Coatings 2021, 11, 371. [Google Scholar] [CrossRef]
- Hirose, R.; Miyazaki, H.; Bandou, R.; Watanabe, N.; Yoshida, T.; Daidoji, T.; Itoh, Y.; Nakaya, T. Stability of SARS-CoV-2 and influenza virus varies across different paper types. J. Infect. Chemother. 2022, 28, 252–256. [Google Scholar] [CrossRef]
- Di Novo, N.G.; Carotenuto, A.R.; Mensitieri, G.; Fraldi, M.; Pugno, N.M. Modeling of Virus Survival Time in Respiratory Droplets on Surfaces: A New Rational Approach for Antivirus Strategies. Front. Mater. 2021, 8, 56. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Jin, X.; Tian, J.; Liu, J.; Mao, Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am. J. Infect. Control 2020, 48, 910–914. [Google Scholar] [CrossRef]
- Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800. [Google Scholar] [CrossRef]
- Li, Y.H.; Fan, Y.Z.; Jiang, L.; Wang, H.B. Aerosol and environmental surface monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol. Infect. 2020, 148, e154. [Google Scholar] [CrossRef]
- Razzini, K.; Castrica, M.; Menchetti, L.; Maggi, L.; Negroni, L.; Orfeo, N.V.; Pizzoccheri, A.; Stocco, M.; Muttini, S.; Balzaretti, C.M. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 2020, 742, 140540. [Google Scholar] [CrossRef]
- Coil, D.A.; Albertson, T.; Banerjee, S.; Brennan, G.; Campbell, A.J.; Cohen, S.H.; Dandekar, S.; Díaz-Muñoz, S.L.; Eisen, J.A.; Goldstein, T.; et al. SARS-CoV-2 detection and genomic sequencing from hospital surface samples collected at UC Davis. PLoS ONE 2021, 16, e0253578. [Google Scholar] [CrossRef]
- Alam, S.; Darul Ehsan, S. Environmental surface sampling of SARS-CoV-2 in selected hospitals in Malaysia. Trop. Biomed. 2021, 38, 462–468. [Google Scholar] [CrossRef]
- Ben-Shmuel, A.; Brosh-Nissimov, T.; Glinert, I.; Bar-David, E.; Sittner, A.; Poni, R.; Cohen, R.; Achdout, H.; Tamir, H.; Yahalom-Ronen, Y.; et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin. Microbiol. Infect. 2020, 26, 1658–1662. [Google Scholar] [CrossRef]
- Moore, G.; Rickard, H.; Stevenson, D.; Aranega-Bou, P.; Pitman, J.; Crook, A.; Davies, K.; Spencer, A.; Burton, C.; Easterbrook, L.; et al. Detection of SARS-CoV-2 within the healthcare environment: A multi-centre study conducted during the first wave of the COVID-19 outbreak in England. J. Hosp. Infect. 2021, 108, 189–196. [Google Scholar] [CrossRef]
- Marcenac, P.; Park, G.W.; Duca, L.M.; Lewis, N.M.; Dietrich, E.A.; Barclay, L.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Rispens, J.; et al. Detection of SARS-CoV-2 on surfaces in households of persons with COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 8154. [Google Scholar] [CrossRef]
- Hu, X.; Xing, Y.; Ni, W.; Zhang, F.; Lu, S.; Wang, Z.; Gao, R.; Jiang, F. Environmental contamination by SARS-CoV-2 of an imported case during incubation period. Sci. Total Environ. 2020, 742, 140620. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient. JAMA-J. Am. Med. Assoc. 2020, 323, 1610–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagishi, T.; Ohnishi, M.; Matsunaga, N.; Kakimoto, K.; Kamiya, H.; Okamoto, K.; Suzuki, M.; Gu, Y.; Sakaguchi, M.; Tajima, T.; et al. Environmental sampling for severe acute respiratory syndrome coronavirus 2 during a COVID-19 outbreak on the diamond princess cruise ship. J. Infect. Dis. 2020, 222, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.J.R.; Nascimento, J.C.F.; Santos Reis, W.P.M.; Silva, C.T.A.; Silva, P.G.; Mendes, R.P.G.; Mendonça, A.A.; Santos, B.N.R.; Magalhães, J.J.F.; Kohl, A.; et al. Widespread contamination of SARS-CoV-2 on highly touched surfaces in Brazil during the second wave of the COVID-19 pandemic. Environ. Microbiol. 2021, 23, 7382–7395. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.P.; Fuhrmeister, E.R.; Cantrell, M.E.; Pitol, A.K.; Swarthout, J.M.; Powers, J.E.; Nadimpalli, M.L.; Julian, T.R.; Pickering, A.J. Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. Environ. Sci. Technol. Lett. 2021, 8, 168–175. [Google Scholar] [CrossRef]
- Kozer, E.; Rinott, E.; Kozer, G.; Bar-Haim, A.; Benveniste-Levkovitz, P.; Klainer, H.; Perl, S.; Youngster, I. Presence of SARS-CoV-2 RNA on playground surfaces and water fountains. Epidemiol. Infect. 2021, 149, e67. [Google Scholar] [CrossRef]
- Guadalupe, J.J.; Rojas, M.I.; Pozo, G.; Erazo-Garcia, M.P.; Vega-Polo, P.; Terán-Velástegui, M.; Rohwer, F.; Torres, M.D.L. Presence of SARS-CoV-2 RNA on surfaces of public places and a transportation system located in a densely populated urban area in South America. Viruses 2022, 14, 19. [Google Scholar] [CrossRef]
- Moreno, T.; Pintó, R.M.; Bosch, A.; Moreno, N.; Alastuey, A.; Minguillón, M.C.; Anfruns-Estrada, E.; Guix, S.; Fuentes, C.; Buonanno, G.; et al. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ. Int. 2021, 147, 106326. [Google Scholar] [CrossRef]
- Di Carlo, P.; Chiacchiaretta, P.; Sinjari, B.; Aruffo, E.; Stuppia, L.; De Laurenzi, V.; Di Tomo, P.; Pelusi, L.; Potenza, F.; Veronese, A.; et al. Air and surface measurements of SARS-CoV-2 inside a bus during normal operation. PLoS ONE 2020, 15, e0235943. [Google Scholar] [CrossRef]
- Caggiano, G.; Triggiano, F.; Apollonio, F.; Diella, G.; Lopuzzo, M.; D’ambrosio, M.; Fasano, F.; Stefanizzi, P.; Sorrenti, G.T.; Magarelli, P.; et al. SARS-CoV-2 rna and supermarket surfaces: A real or presumed threat? Int. J. Environ. Res. Public Health 2021, 18, 404. [Google Scholar] [CrossRef]
- Montagna, M.T.; De Giglio, O.; Calia, C.; Pousis, C.; Apollonio, F.; Campanale, C.; Diella, G.; Lopuzzo, M.; Marzella, A.; Triggiano, F.; et al. First Detection of Severe Acute Respiratory Syndrome Coronavirus 2 on the Surfaces of Tourist-Recreational Facilities in Italy. Int. J. Environ. Res. Public Health 2021, 18, 3252. [Google Scholar] [CrossRef]
- Caggiano, G.; Apollonio, F.; Triggiano, F.; Diella, G.; Stefanizzi, P.; Lopuzzo, M.; D’ambrosio, M.; Bartolomeo, N.; Barbuti, G.; Sorrenti, G.T.; et al. SARS-CoV-2 and public transport in Italy. Int. J. Environ. Res. Public Health 2021, 18, 1415. [Google Scholar] [CrossRef]
- ISO. UNI EN ISO 15216-2:2019; Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Method for Detection; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 23. [Google Scholar] [CrossRef] [Green Version]
- Dargahi, A.; Jeddi, F.; Vosoughi, M.; Karami, C.; Hadisi, A.; Ahamad Mokhtari, S.; Ghobadi, H.; Alighadri, M.; Haghighi, S.B.; Sadeghi, H. Investigation of SARS-CoV-2 virus in environmental surface. Environ. Res. 2021, 195, 110765. [Google Scholar] [CrossRef]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Samudrala, P.K.; Kumar, P.; Choudhary, K.; Thakur, N.; Wadekar, G.S.; Dayaramani, R.; Agrawal, M.; Alexander, A. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur. J. Pharmacol. 2020, 883, 173375. [Google Scholar] [CrossRef]
- Abdel-Hady, A.; Worth Calfee, M.; Aslett, D.; Lee, S.D.; Wyrzykowska-Ceradini, B.; Robbins Delafield, F.; May, K.; Touati, A. Alternative fast analysis method for cellulose sponge surface sampling wipes with low concentrations of Bacillus Spores. J. Microbiol. Methods 2019, 156, 5–8. [Google Scholar] [CrossRef]
- Mancusi, A.; Capuano, F.; Girardi, S.; Di Maro, O.; Suffredini, E.; Di Concilio, D.; Vassallo, L.; Cuomo, M.C.; Tafuro, M.; Signorelli, D.; et al. Detection of SARS-CoV-2 RNA in Bivalve Mollusks by Droplet Digital RT-PCR (dd RT-PCR). Int. J. Environ. Res. Public Health 2022, 19, 943. [Google Scholar] [CrossRef]
- Kraay, A.N.M.; Hayashi, M.A.L.; Berendes, D.M.; Sobolik, J.S.; Leon, J.S.; Lopman, B.A. Risk of fomite-mediated transmission of SARS-CoV-2 in child daycares, schools, and offices: A modeling study. medRxiv 2020. [Google Scholar] [CrossRef]
- Park, G.W.; Chhabra, P.; Vinjé, J. Swab Sampling Method for the Detection of Human Norovirus on Surfaces. J. Vis. Exp. 2017, 120, 55205. [Google Scholar] [CrossRef]
- Di Maria, F.; La Rosa, G.; Bonato, T.; Pivato, A.; Piazza, R.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Iaconelli, M.; Beccaloni, E.; et al. An innovative approach for the non-invasive surveillance of communities and early detection of SARS-CoV-2 via solid waste analysis. Sci. Total Environ. 2021, 801, 149743. [Google Scholar] [CrossRef]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Park, C.; Lee, J.; ul Hassan, Z.; Ku, K.B.; Kim, S.J.; Kim, H.G.; Park, E.C.; Park, G.S.; Park, D.; Baek, S.H.; et al. Comparison of digital pcr and quantitative pcr with various SARS-CoV-2 primer-probe sets. J. Microbiol. Biotechnol. 2021, 31, 358–367. [Google Scholar] [CrossRef]
- Tenhagen, B.A.; Arth, O.; Bandick, N.; Fetsch, A. Comparison of three sampling methods for the quantification of methicillin-resistant Staphylococcus aureus on the surface of pig carcases. Food Control 2011, 22, 643–645. [Google Scholar] [CrossRef]
- Nguyen, H.; Morgan, D.A.F.; Cull, S.; Benkovich, M.; Forwood, M.R. Sponge swabs increase sensitivity of sterility testing of processed bone and tendon allografts. J. Ind. Microbiol. Biotechnol. 2011, 38, 1127–1132. [Google Scholar] [CrossRef]
- Engelhardt, N.E.P.; Foster, N.F.; Hong, S.; Riley, T.V.; McGechie, D.B. Comparison of two environmental sampling tools for the detection of Clostridium difficile spores on hard bathroom surfaces in the hospital setting. J. Hosp. Infect. 2017, 96, 295–296. [Google Scholar] [CrossRef]
- Gallina, S.; Bianchi, D.M.; Ru, G.; Maurella, C.; Barzanti, P.; Baioni, E.; Virgilio, S.; Mioni, R.; Lanni, L.; Migliazzo, A.; et al. Microbiological recovery from bovine, swine, equine, and ovine carcasses: Comparison of excision, sponge and swab sampling methods. Food Control 2015, 50, 919–924. [Google Scholar] [CrossRef]
- Yu, F.; Yan, L.; Wang, N.; Yang, S.; Wang, L.; Tang, Y.; Gao, G.; Wang, S.; Ma, C.; Xie, R.; et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 2020, 71, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Cassinari, K.; Alessandri-Gradt, E.; Chambon, P.; Charbonnier, F.; Gracias, S.; Beaussire, L.; Alexandre, K.; Sarafan-Vasseur, N.; Houdayer, C.; Etienne, M.; et al. Assessment of Multiplex Digital Droplet RT-PCR as a Diagnostic Tool for SARS-CoV-2 Detection in Nasopharyngeal Swabs and Saliva Samples. Clin. Chem. 2021, 67, 736–741. [Google Scholar] [CrossRef]
- Long, S.; Berkemeier, B. Ultrasensitive detection and quantification of viral nucleic acids with Raindance droplet digital PCR (ddPCR). Methods 2021, 201, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, R.H.; Cook, L.; Cheng, A.; Magaret, A.; Jerome, K.R. Clinical utility of droplet digital PCR for human cytomegalovirus. J. Clin. Microbiol. 2014, 52, 2844–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dube, S.; Qin, J.; Ramakrishnan, R. Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device. PLoS ONE 2008, 3, e2876. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.R.L.; Rajan-Babu, I.S.; Law, H.Y.; Lee, C.G.; Chong, S.S. Tolerance of Droplet-Digital PCR vs. Real-Time Quantitative PCR to Inhibitory Substances. Clin. Chem. 2013, 59, 1670–1672. [Google Scholar]
- Singh, M.; Sadat, A.; Abdi, R.; Colaruotolo, L.A.; Francavilla, A.; Petker, K.; Nasr, P.; Moraveji, M.; Cruz, G.; Huang, Y.; et al. Detection of SARS-CoV-2 on surfaces in food retailers in Ontario. Curr. Res. Food Sci. 2021, 4, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Chaintoutis, S.C.; Thomou, Z.; Mouchtaropoulou, E.; Tsiolas, G.; Chassalevris, T.; Stylianaki, I.; Lagou, M.; Michailidou, S.; Moutou, E.; Koenen, J.J.H.; et al. Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination. PLoS Pathog. 2021, 17, e1009883. [Google Scholar] [CrossRef]
- De Rooij, M.M.T.; Hakze-Van Der Honing, R.W.; Hulst, M.M.; Harders, F.; Engelsma, M.; Van De Hoef, W.; Meliefste, K.; Nieuwenweg, S.; Oude Munnink, B.B.; Van Schothorst, I.; et al. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup. Environ. Med. 2021, 78, 893–899. [Google Scholar] [CrossRef]
- Montse, M.; José, L.D. Contamination of inert surfaces by SARS-CoV-2: Persistence, stability and infectivity. A review. Environ. Res. 2021, 193, 110559. [Google Scholar]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
Sampling Location | District | Environmental Samples | Animal Swabs | Human Swabs |
---|---|---|---|---|
Buffaloes farm_1 | Caserta | 1 | 20 | 7 |
Buffaloes farm_2 | Caserta | 1 | 22 | 11 |
Buffaloes farm_3 | Caserta | 1 | 23 | 12 |
Buffaloes farm_4 | Caserta | 10 | 32 | 9 |
Cattle farm | Salerno | - | 10 | 1 |
Goat and cattle farm | Salerno | 2 | 17 | 2 |
Goat farm_1 | Salerno | 1 | 6 | - |
Goat farm_2 | Salerno | - | 10 | 1 |
Hen farm_1 | Salerno | 1 | 10 | 5 |
Hen farm_2 | Salerno | 1 | 11 | 10 |
Horse stall_1 | Salerno | 4 | 6 | 3 |
Horse stall_2 | Salerno | 6 | 14 | 4 |
Pig farm | Salerno | 1 | 9 | 7 |
Pig farm | Benevento | 1 | 16 | 6 |
Pig farm | Avellino | 2 | 21 | 2 |
Pigeon farm | Napoli | 1 | 12 | 2 |
Rabbits farm | Salerno | 1 | 7 | 11 |
Bus_1 | Salerno | 5 | - | - |
Bus_2 | Salerno | 5 | - | - |
Bus_3 | Salerno | 5 | - | - |
Bus_4 | Salerno | 5 | - | - |
Supermarket | Salerno | 14 | - | - |
Hotel receptive structure | Napoli | 9 | - | - |
Total | 77 | 246 | 93 |
Primers and Probes | Sequence | Concentrations |
---|---|---|
RdRp_SARSr-F | GTGARATGGTCATGTGTGGCGG | 600 nM |
RdRp_SARSr-R | CARATGTTAAASACACTATTAGCATA | 800 nM |
RdRP_SARSr-P1 | FAM-CCAGGTGGWACRTCATCMGGTGATGC-BBQ | 100 nM |
RdRp_SARSr-P2 | FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ | 100 nM |
E_Sarbeco_F | ACAGGTACGTTAATAGTTAATAGCGT | 400 nM |
E_Sarbeco_R | ATATTGCAGCAGTACGCACACA | 400 nM |
E_Sarbeco_P1 | FAM-ACACTAGCCATCCTTACTGCGCTTCG-BBQ | 200 nM |
N_Sarbeco_F | CACATTGGCACCCGCAATC | 600 nM |
N_Sarbeco_R | GAGGAACGAGAAGAGGCTTG | 800 nM |
N_Sarbeco_P | FAM-ACTTCCTCAAGGAACAACATTGCCA-BBQ | 200 nM |
Sampling Location | Municipality | N° of Samples | dd RT-PCR | ||
---|---|---|---|---|---|
RdRp | E Gene | N Gene | |||
Buffaloes farm_1 | Caserta | 1 | + | - | - |
Buffaloes farm_2 | Caserta | 1 | - | - | - |
Buffaloes farm_3 | Caserta | 1 | - | - | - |
Buffaloes farm_4 | Caserta | 1 | + | - | - |
Buffaloes farm_4 | Caserta | 2 | + | + | - |
Buffaloes farm_4 | Caserta | 7 | - | - | - |
Cattle farm | Salerno | 1 | - | - | - |
Goat and cattle farm | Salerno | 1 | - | - | - |
Goat farm_1 | Salerno | 1 | - | - | - |
Goat farm_2 | Salerno | 1 | + | - | - |
Hen farm_1 | Salerno | 1 | + | - | - |
Hen farm_2 | Salerno | 1 | - | - | - |
Horse stall_1 | Salerno | 2 | - | - | - |
Horse stall_1 | Salerno | 2 | + | + | - |
Horse stall_1 | Salerno | 2 | + | - | - |
Horse stall_2 | Salerno | 4 | - | - | - |
Pig farm | Salerno | 1 | - | - | - |
Pig farm | Benevento | 1 | - | - | - |
Pig farm | Avellino | 1 | - | - | - |
Pigeon farm | Napoli | 1 | - | - | - |
Rabbits farm | Salerno | 1 | - | + | - |
subtotal | 34 | 10 (29%) | 5 (15%) | 0 (0%) | |
Bus_1 | Salerno | 3 | - | - | - |
Bus_1 | Salerno | 1 | + | - | - |
Bus_1 | Salerno | 1 | + | + | - |
Bus_2 | Salerno | 1 | + | - | - |
Bus_2 | Salerno | 4 | - | - | - |
Bus_3 | Salerno | 1 | + | + | - |
Bus_3 | Salerno | 3 | - | - | - |
Bus_3 | Salerno | 1 | + | - | - |
Bus_4 | Salerno | 4 | - | - | - |
Bus_4 | Salerno | 1 | + | - | - |
subtotal | 20 | 6 (30%) | 2 (10%) | 0 (0%) | |
Supermarket | Salerno | 11 | - | - | - |
Supermarket | Salerno | 1 | - | + | - |
Supermarket | Salerno | 1 | - | - | + |
Supermarket | Salerno | 1 | + | - | - |
subtotal | 14 | 1 (7%) | 1 (7%) | 1 (7%) | |
Hotel receptive structure | Napoli | 9 | - | - | - |
subtotal | 9 | 0 (0%) | 0 (0%) | 0 (0%) | |
Total | 77 | 17 (22%) | 8 (10%) | 1 (1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinale, D.; Tafuro, M.; Mancusi, A.; Girardi, S.; Capuano, F.; Proroga, Y.T.R.; Corrado, F.; D’Auria, J.L.; Coppola, A.; Rofrano, G.; et al. Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments. Int. J. Environ. Res. Public Health 2022, 19, 5861. https://doi.org/10.3390/ijerph19105861
Cardinale D, Tafuro M, Mancusi A, Girardi S, Capuano F, Proroga YTR, Corrado F, D’Auria JL, Coppola A, Rofrano G, et al. Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments. International Journal of Environmental Research and Public Health. 2022; 19(10):5861. https://doi.org/10.3390/ijerph19105861
Chicago/Turabian StyleCardinale, Davide, Maria Tafuro, Andrea Mancusi, Santa Girardi, Federico Capuano, Yolande Thérèse Rose Proroga, Federica Corrado, Jacopo Luigi D’Auria, Annachiara Coppola, Giuseppe Rofrano, and et al. 2022. "Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments" International Journal of Environmental Research and Public Health 19, no. 10: 5861. https://doi.org/10.3390/ijerph19105861
APA StyleCardinale, D., Tafuro, M., Mancusi, A., Girardi, S., Capuano, F., Proroga, Y. T. R., Corrado, F., D’Auria, J. L., Coppola, A., Rofrano, G., Volzone, P., Galdi, P., De Vita, S., Gallo, A., Suffredini, E., Pierri, B., Cerino, P., & Morgante, M. (2022). Sponge Whirl-Pak Sampling Method and Droplet Digital RT-PCR Assay for Monitoring of SARS-CoV-2 on Surfaces in Public and Working Environments. International Journal of Environmental Research and Public Health, 19(10), 5861. https://doi.org/10.3390/ijerph19105861