One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era
Abstract
:1. Introduction
- (1)
- How to gather tracking data in schools for further decision-making.
- (2)
- What queueing algorithm can be used to control social gatherings?
- (3)
- How to allocate limited medical resources in case of emergency.
- (4)
- Is the model more feasible in practice compared to current means?
2. Related Work
3. Methods
3.1. Social Gathering Control
3.2. Outdoor–Indoor Contact Tracing
3.2.1. Outdoor Tracing
3.2.2. Indoor Tracing
- (1)
- The system is non-linear, and it is defined as:
- (2)
- The system initial state is defined as:
- (3)
- Equations (13)–(15) are used for status prediction:
- (4)
- Observations and update, in Equations (16) and (17):
3.3. Risk Assesement and Resources’ Allocation
3.3.1. An Approximate Algorithm to Define Contact Level
- (1)
- Sometimes, COVID-19-positive individuals may not be isolated in time and they can freely hang out, especially asymptomatic patients [58].
- (2)
- No matter whether COVID-19 patients have symptoms or not, they can infect other people.
- (3)
- The farther away from a COVID-19 patient, the safer [59].
- (4)
- The place where COVID-19 patients stay may be polluted. Even if the patient leaves, people who come to these places could still be infected [60].
- (5)
- If a person has close contact with a COVID-19-positive patient, he will not be a new infection source very soon.
3.3.2. The Use of Contact Levels
4. Results and Discussion
4.1. Current Efforts for COVID-19 Control in School
4.2. The Feasibility of Positioning and Tracing
4.3. The Possibility of Promotion
5. Conclusions
- (1)
- We used a customized queue model to manage the throng of people to avoid social gatherings, which is hard to see in real-world school management.
- (2)
- We considered the high infection risk in indoor environments, and indoor tracking technology was introduced.
- (3)
- We used a simplified model to assess people’s contact levels. Based on these indicators, we can allocate resources more effectively compared to using random and aimless strategies.
- (4)
- The proposed model is feasible both in technology and society.
6. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chatterjee, A.N.; Basir, F.A.; Ahmad, B.; Alsaedi, A. A Fractional-Order Compartmental Model of Vaccination for COVID-19 with the Fear Factor. Mathematics 2022, 10, 1451. [Google Scholar] [CrossRef]
- Dalton, C.B.; Corbett, S.J.; Katelaris, A.L. COVID-19: Implementing sustainable low cost physical distancing and enhanced hygiene. Med. J. Aust. 2020, 212, 443. [Google Scholar] [CrossRef]
- Aljuaid, M.; Ilyas, N.; Altuwaijri, E.; Albedawi, H.; Alanazi, O.; Shahid, D.; Alonazi, W. Quality of Life among Caregivers of Patients Diagnosed with Major Chronic Disease during COVID-19 in Saudi Arabia. Healthcare 2022, 10, 523. [Google Scholar] [CrossRef]
- Klinsrisuk, R.; Pechdin, W. Evidence from Thailand on Easing COVID-19’s International Travel Restrictions: An Impact on Economic Production, Household Income, and Sustainable Tourism Development. Sustainability 2022, 14, 3423. [Google Scholar] [CrossRef]
- Strelkovskii, N.; Rovenskaya, E. Causal Loop Diagramming of Socioeconomic Impacts of COVID-19: State-of-the-Art, Gaps and Good Practices. Systems 2021, 9, 65. [Google Scholar] [CrossRef]
- Wilson, N.; Corbett, S.; Tovey, E. Airborne transmission of COVID-19 Guidelines and governments must acknowledge the evidence and take steps to protect the public. BMJ-Br. Med. J. 2020, 370, 2. [Google Scholar] [CrossRef]
- Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021, 2, e13–e22. [Google Scholar] [CrossRef]
- Funk, S.M.; Fa, J.E.; Ajong, S.N.; Eniang, E.A.; Dendi, D.; Di Vittorio, M.; Petrozzi, F.; Amadi, N.; Akani, G.C.; Luiselli, L. Pre-and post-Ebola outbreak trends in wild meat trade in West Africa. Biol. Conserv. 2021, 255, 109024. [Google Scholar] [CrossRef]
- Dulin, N.; Spanier, A.; Merino, K.; Hutter, J.N.; Waterman, P.E.; Lee, C.; Hamer, M.J. Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine 2021, 39, 202–208. [Google Scholar] [CrossRef]
- López Zúñiga, M.Á.; Moreno-Moral, A.; Ocaña-Granados, A.; Padilla-Moreno, F.A.; Castillo-Fernández, A.M.; Guillamón-Fernández, D.; Ramírez-Sánchez, C.; Sanchez-Palop, M.; Martínez-Colmenero, J.; Pimentel-Villar, M.A. High-dose corticosteroid pulse therapy increases the survival rate in COVID-19 patients at risk of hyper-inflammatory response. PLoS ONE 2021, 16, e0243964. [Google Scholar] [CrossRef]
- Christie, A.; Brooks, J.T.; Hicks, L.A.; Sauber-Schatz, E.K.; Yoder, J.S.; Honein, M.A.; COVID, C.; Team, R. Guidance for implementing COVID-19 prevention strategies in the context of varying community transmission levels and vaccination coverage. Morb. Mortal. Wkly. Rep. 2021, 70, 1044. [Google Scholar] [CrossRef]
- Zhuang, Z.A.; Cao, P.H.; Zhao, S.; Han, L.F.; He, D.H.; Yang, L. The shortage of hospital beds for COVID-19 and non-COVID-19 patients during the lockdown of Wuhan, China. Ann. Transl. Med. 2021, 9, 200. [Google Scholar] [CrossRef]
- Alali, Y.; Harrou, F.; Sun, Y. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Sci. Rep. 2022, 12, 2467. [Google Scholar] [CrossRef]
- Joffe, A.R. COVID-19: Rethinking the lockdown groupthink. Front. Public Health 2021, 9, 98. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Cha, W.-T.; Joo, H.-J.; Park, Y.-S.; Park, E.-C.; Kim, S.-Y. Depression before and during-COVID-19 by Gender in the Korean Population. Int. J. Environ. Res. Public Health 2022, 19, 3477. [Google Scholar] [CrossRef]
- Pan, L.; Wang, J.; Wang, X.; Ji, J.S.; Ye, D.; Shen, J.; Li, L.; Liu, H.; Zhang, L.; Shi, X. Prevention and control of coronavirus disease 2019 (COVID-19) in public places. Environ. Pollut. 2022, 292, 118273. [Google Scholar] [CrossRef]
- Students and Faculty Transported to Safety after COVID-19 Outbreak. Available online: https://www.chinadaily.com.cn/a/202203/11/WS622ac84ca310cdd39bc8c021.html (accessed on 15 March 2022).
- Vuong, Q.-H. The (ir)rational consideration of the cost of science in transition economies. Nat. Hum. Behav. 2018, 2, 5. [Google Scholar] [CrossRef]
- Samui, P.; Mondal, J.; Khajanchi, S. A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solitons Fractals 2020, 140, 110173. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, M.; Li, J.H.; Qin, Q.L. Rare disasters, exchange rates, and macroeconomic policy: Evidence from COVID-19. Econ. Lett. 2021, 209, 5. [Google Scholar] [CrossRef]
- Zoabi, Y.; Deri-Rozov, S.; Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj Digit. Med. 2021, 4, 3. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chen, J.K.C.; Ho, H.-H. BIM for Smart Hospital Management during COVID-19 Using MCDM. Sustainability 2021, 13, 6181. [Google Scholar] [CrossRef]
- Lanera, C.; Azzolina, D.; Pirotti, F.; Prosepe, I.; Lorenzoni, G.; Berchialla, P.; Gregori, D. A Web-Based Application to Monitor and Inform about the COVID-19 Outbreak in Italy: The {COVID-19ita} Initiative. Healthcare 2022, 10, 473. [Google Scholar] [CrossRef]
- Fang, X.; Ming, C.; Cen, Y.; Lin, H.; Zhan, K.; Yang, S.; Li, L.; Cao, G.; Li, Q.; Ma, X. Post-sequelae one year after hospital discharge among older COVID-19 patients: A multi-center prospective cohort study. J. Infect. 2022, 84, 179–186. [Google Scholar] [CrossRef]
- Ladner, J.T.; Grubaugh, N.D.; Pybus, O.G.; Andersen, K.G. Precision epidemiology for infectious disease control. Nat. Med. 2019, 25, 206–211. [Google Scholar] [CrossRef]
- Viselli, L.; Salfi, F.; D’Atri, A.; Amicucci, G.; Ferrara, M. Sleep Quality, Insomnia Symptoms, and Depressive Symptomatology among Italian University Students before and during the COVID-19 Lockdown. Int. J. Environ. Res. Public Health 2021, 18, 13346. [Google Scholar] [CrossRef]
- D’Angelo, D.; Sinopoli, A.; Napoletano, A.; Gianola, S.; Castellini, G.; del Monaco, A.; Fauci, A.J.; Latina, R.; Iacorossi, L.; Salomone, K.; et al. Strategies to exiting the COVID-19 lockdown for workplace and school: A scoping review. Saf. Sci. 2021, 134, 105067. [Google Scholar] [CrossRef]
- Vogt, F.; Haire, B.; Selvey, L.; Katelaris, A.L.; Kaldor, J. Effectiveness evaluation of digital contact tracing for COVID-19 in New South Wales, Australia. Lancet Public Health 2022, 7, e250–e258. [Google Scholar] [CrossRef]
- Li, X.; Lester, D.; Rosengarten, G.; Aboltins, C.; Patel, M.; Cole, I. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Sci. Total Environ. 2022, 812, 152592. [Google Scholar] [CrossRef]
- Jiang, F.C.; Jiang, X.L.; Wang, Z.G.; Meng, Z.H.; Shao, S.F.; Anderson, B.D.; Ma, M.J. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 RNA on Surfaces in Quarantine Rooms. Emerg. Infect. Dis. 2020, 26, 2162. [Google Scholar] [CrossRef]
- Hayashi, M.A.; Boerger, S.; Zou, K.; Simon, S.; Freeman, M.C.; Eisenberg, J.N. Shared water facilities and risk of COVID-19 in resource-poor settings: A transmission modelling study. PLoS Water 2022, 1, e0000011. [Google Scholar] [CrossRef]
- Peng, Z.; Rojas, A.P.; Kropff, E.; Bahnfleth, W.; Buonanno, G.; Dancer, S.J.; Kurnitski, J.; Li, Y.; Loomans, M.G.; Marr, L.C. Practical indicators for risk of airborne transmission in shared indoor environments and their application to COVID-19 outbreaks. Environ. Sci. Technol. 2022, 56, 1125–1137. [Google Scholar] [CrossRef]
- Darányi, A.; Dörgő, G.; Ruppert, T.; Abonyi, J. Processing indoor positioning data by goal-oriented supervised fuzzy clustering for tool management. J. Manuf. Syst. 2022, 63, 15–22. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Li, Z.; Cui, J. Region-Level Traffic Prediction Based on Temporal Multi-Spatial Dependence Graph Convolutional Network from GPS Data. Remote Sens. 2022, 14, 303. [Google Scholar] [CrossRef]
- Liu, Z.; Du, L.; Zhou, P.; Liu, Z.; Zhang, Z.; Xu, Z. Performance assessment of GNSS-IR altimetry using signal-to-noise ratio data from a Huawei P30 smartphone. GPS Solut. 2022, 26, 42. [Google Scholar] [CrossRef]
- Sinhababu, N.; Pramanik, P.K.D. An Efficient Obstacle Detection Scheme for Low-Altitude UAVs Using Google Maps. In Data Management, Analytics and Innovation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 455–470. [Google Scholar]
- Koch, F.; Henkel, P.; Appel, F.; Schmid, L.; Bach, H.; Lamm, M.; Prasch, M.; Schweizer, J.; Mauser, W. Retrieval of snow water equivalent, liquid water content, and snow height of dry and wet snow by combining GPS signal attenuation and time delay. Water Resour. Res. 2019, 55, 4465–4487. [Google Scholar] [CrossRef]
- Ye, H.; Yang, B.; Long, Z.; Dai, C. A Method of Indoor Positioning by Signal Fitting and PDDA Algorithm using BLE AOA Device. IEEE Sens. J. 2022, 8, 3331–3345. [Google Scholar] [CrossRef]
- Mo, L.; Zhu, Y.; Zhang, D. UHF RFID Indoor Localization Algorithm Based on BP-SVR. IEEE J. Radio Freq. Identif. 2022, 1. [Google Scholar] [CrossRef]
- Gao, M. Smart campus teaching system based on ZigBee wireless sensor network. Alex. Eng. J. 2022, 61, 2625–2635. [Google Scholar] [CrossRef]
- Zhou, N.; Lau, L.; Bai, R.; Moore, T. Novel prior position determination approaches in particle filter for ultra wideband (UWB)-based indoor positioning. NAVIGATION J. Inst. Navig. 2021, 68, 277–292. [Google Scholar] [CrossRef]
- Venkata Krishnaveni, B.; Suresh Reddy, K.; Ramana Reddy, P. Indoor Positioning and Tracking by Coupling IMU and UWB with the Extended Kalman Filter. IETE J. Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Pham, D.T.; Mai, T.T.N. Ensemble learning model for Wifi indoor positioning systems. IAES Int. J. Artif. Intell. 2021, 10, 200. [Google Scholar]
- Habiyaremye, J.; Zennaro, M.; Mikeka, C.; Masabo, E.; Kumaran, S.; Jayavel, K. GPRS Sensor Node Battery Life Span Prediction Based on Received Signal Quality: Experimental Study. Information 2020, 11, 524. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.J.; Xu, S.L.; Cao, H.J.; Si, M.H. Indoor Positioning Integrating PDR/Geomagnetic Positioning Based on the Genetic-Particle Filter. Appl. Sci. 2020, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Subhan, F.; Saleem, S.; Bari, H.; Khan, W.Z.; Hakak, S.; Ahmad, S.; El-Sherbeeny, A.M. Linear Discriminant Analysis-Based Dynamic Indoor Localization Using Bluetooth Low Energy (BLE). Sustainability 2020, 12, 627. [Google Scholar] [CrossRef]
- Zonzini, F.; Bogomolov, D.; Dhamija, T.; Testoni, N.; De Marchi, L.; Marzani, A. Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring. Sensors 2022, 22, 1091. [Google Scholar] [CrossRef]
- Dang, X.; Ma, W.; Habets, E.A.; Zhu, H. TDOA-Based Robust Sound Source Localization with Sparse Regularization in Wireless Acoustic Sensor Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 30, 1108–1123. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.; Shen, Z.; Xie, W.; Zhang, D.; Xu, J. AoA-Based Positioning for Aerial Intelligent Reflecting Surface-Aided Wireless Communications: An Angle-Domain Approach. IEEE Wirel. Commun. Lett. 2022, 11, 761–765. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, J.; Sheng, M.; Zheng, Y.; Li, J. Exploiting fingerprint correlation for fingerprint-based indoor localization: A deep learning based approach. IEEE Trans. Veh. Technol. 2021, 70, 5762–5774. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.; Costa, A.C.; Torres-Sospedra, J.; Painho, M.; Huerta, J. Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting. IEEE Sens. J. 2021, 22, 4978–4988. [Google Scholar] [CrossRef]
- Sahar, A.; Han, D. An LSTM-based indoor positioning method using Wi-Fi signals. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27–29 August 2018; pp. 1–5. [Google Scholar]
- Chen, G.; Guo, X.; Liu, K.; Li, X.; Yang, J. RWKNN: A Modified WKNN Algorithm Specific for the Indoor Localization Problem. IEEE Sens. J. 2022, 22, 7258–7266. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Hu, A. Red, yellow, green or golden: The post-pandemic future of China’s health code apps. Inf. Commun. Soc. 2022, 25, 618–633. [Google Scholar] [CrossRef]
- Mas, L.; Vilaplana, J.; Mateo, J.; Solsona, F. A queuing theory model for fog computing. J. Supercomput. 2022, 78, 11138–11155. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Liu, Y. Recurrent-neural-network-based unscented Kalman filter for estimating and compensating the random drift of MEMS gyroscopes in real time. Mech. Syst. Signal Process. 2021, 147, 107057. [Google Scholar] [CrossRef]
- Kronbichler, A.; Kresse, D.; Yoon, S.; Lee, K.H.; Effenberger, M.; Shin, J.I. Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 98, 180–186. [Google Scholar] [CrossRef]
- Aquino, E.M.; Silveira, I.H.; Pescarini, J.M.; Aquino, R.; Souza-Filho, J.A.d.; Rocha, A.d.S.; Ferreira, A.; Victor, A.; Teixeira, C.; Machado, D.B. Social distancing measures to control the COVID-19 pandemic: Potential impacts and challenges in Brazil. Cienc. Saude Coletiva 2020, 25, 2423–2446. [Google Scholar] [CrossRef]
- Khan, A.H.; Tirth, V.; Fawzy, M.; Mahmoud, A.E.D.; Khan, N.A.; Ahmed, S.; Ali, S.S.; Akram, M.; Hameed, L.; Islam, S. COVID-19 transmission, vulnerability, persistence and nanotherapy: A review. Environ. Chem. Lett. 2021, 19, 2773–2787. [Google Scholar] [CrossRef]
- Brisca, G.; Mallamaci, M.; Tardini, G.; Martino, L.; Chianucci, B.; Ricci, M.; Buffoni, I.; Romanengo, M. SARS-CoV-2 Infection May Present as Acute Hepatitis in Children. Pediatr. Infect. Dis. J. 2021, 40, e214–e215. [Google Scholar] [CrossRef]
- Soiza, R.L.; Scicluna, C.; Thomson, E.C. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing 2021, 50, 279–283. [Google Scholar] [CrossRef]
- Rozhnova, G.; van Dorp, C.H.; Bruijning-Verhagen, P.; Bootsma, M.C.; van de Wijgert, J.H.; Bonten, M.J.; Kretzschmar, M.E. Model-based evaluation of school-and non-school-related measures to control the COVID-19 pandemic. Nat. Commun. 2021, 12, 1614. [Google Scholar] [CrossRef]
- Al-Alami, Z.M.; Adwan, S.W.; Alsous, M. Remote learning during COVID-19 lockdown: A study on anatomy and histology education for pharmacy students in Jordan. Anat. Sci. Educ. 2022, 15, 249–260. [Google Scholar] [CrossRef]
- Ponce, P.; Mata, O.; Perez, E.; Lopez, J.R.; Molina, A.; McDaniel, T. S4 Features and Artificial Intelligence for Designing a Robot against COVID-19—Robocov. Future Internet 2022, 14, 22. [Google Scholar] [CrossRef]
- Zhu, T.; Watkinson, P.; Clifton, D.A. Smartwatch data help detect COVID-19. Nat. Biomed. Eng. 2020, 4, 1125–1127. [Google Scholar] [CrossRef]
- Hanley, D.; De Oliveira, A.S.D.; Zhang, X.; Kim, D.H.; Wei, Y.; Bretl, T. The impact of height on indoor positioning with magnetic fields. IEEE Trans. Instrum. Meas. 2021, 70, 8501719. [Google Scholar] [CrossRef]
- Qin, F.; Zuo, T.; Wang, X. Ccpos: Wifi fingerprint indoor positioning system based on cdae-cnn. Sensors 2021, 21, 1114. [Google Scholar] [CrossRef]
- Nagah Amr, M.; ELAttar, H.M.; Abd El Azeem, M.H.; El Badawy, H. An enhanced indoor positioning technique based on a novel received signal strength indicator distance prediction and correction model. Sensors 2021, 21, 719. [Google Scholar] [CrossRef]
- Vuong, Q.-H.; Le, T.-T.; La, V.-P.; Nguyen, H.T.T.; Ho, M.-T.; Van Khuc, Q.; Nguyen, M.-H. COVID-19 vaccines production and societal immunization under the serendipity-mindsponge-3D knowledge management theory and conceptual framework. Humanit. Soc. Sci. Commun. 2022, 9, 22. [Google Scholar] [CrossRef]
- Cohen, R.; Delacourt, C.; Gras-Le Guen, C.; Launay, E. COVID-19 and schools. Guidelines of the French Pediatric Society. Arch. Pédiatrie 2020, 27, 388–392. [Google Scholar] [CrossRef]
- de Beurs, E.; Blankers, M.; Peen, J.; Rademacher, C.; Podgorski, A.; Dekker, J. Impact of COVID-19 social distancing measures on routine mental health care provision and treatment outcome for common mental disorders in the Netherlands. Clin. Psychol. Psychother. 2022; in press. [Google Scholar] [CrossRef]
Student Name | Request Time | Predicted Staying Time |
---|---|---|
A | 10:20 | 10 min |
B | 10:25 | 10 min |
C | 10:30 | 15 min |
D | 10:31 | 5 min |
Time | Student A | Student B | Student C | Student D |
---|---|---|---|---|
10:20 | Yes | Not applicable | Not applicable | Not applicable |
10:25 | Yes | Waiting | Not applicable | Not applicable |
10:30 | Not applicable | Yes ) | Waiting | Not applicable |
10:40 | Not applicable | Not applicable | Waiting | Yes ) |
Name | Annotation |
---|---|
Euclidean distance | |
Number of reference points | |
Maximum possible distance of going from previous position to within the sampling interval | |
Predicted location | |
means previous |
Time | Close Contact | Normal Contact | Low Contact |
---|---|---|---|
close contact | normal contact | low contact | |
close contact | low contact | low contact | |
normal contact | low contact | low contact | |
low contact | low contact | low contact |
Data Preprocessing and Optimized KNN | Data Preprocessing and Original KNN | No Data Preprocessing and Optimized KNN | |
---|---|---|---|
Less than 0.5 m | 8.5% | 5.5% | 5% |
Less than 1.5 m | 48.5% | 39.5% | 37.5% |
Less than 2.5 m | 78% | 74.5% | 73.5% |
Less than 5.0 m | 99% | 97.5% | 96.5% |
Average Error | 1.82 m | 2.07 m | 2.15 m |
People Stay Still | People Move | |
---|---|---|
Less than 0.5 m | 8.5% | 7.5% |
Less than 1.5 m | 48.5% | 41.5% |
Less than 2.5 m | 78% | 74% |
Less than 5.0 m | 99% | 98% |
Average Error | 1.82 m | 1.95 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wang, W.; Li, F.; Yang, D. One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era. Int. J. Environ. Res. Public Health 2022, 19, 5913. https://doi.org/10.3390/ijerph19105913
Yang C, Wang W, Li F, Yang D. One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era. International Journal of Environmental Research and Public Health. 2022; 19(10):5913. https://doi.org/10.3390/ijerph19105913
Chicago/Turabian StyleYang, Cunwei, Weiqing Wang, Fengying Li, and Degang Yang. 2022. "One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era" International Journal of Environmental Research and Public Health 19, no. 10: 5913. https://doi.org/10.3390/ijerph19105913
APA StyleYang, C., Wang, W., Li, F., & Yang, D. (2022). One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era. International Journal of Environmental Research and Public Health, 19(10), 5913. https://doi.org/10.3390/ijerph19105913