Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Bibliometric Analysis Methods
3. Results and Analyses
3.1. Discipline Co-Occurrence Analysis
3.2. Publication Characteristics Analysis
3.3. Partnership Analysis
3.4. Influence Analysis
3.5. Keyword Co-Occurrence Analysis
3.6. Co-Citation Analysis
3.6.1. Timeline View (2012–2016)
Cluster ID | Size | Silhouette | Cluster Label (LLR) | Representative Publication |
---|---|---|---|---|
#0 | 64 | 0.894 | polycyclic aromatic hydrocarbons | Yu et al. (2014) [24], Jiang et al. (2014) [29], Tuyen et al. (2014) [30], Hoseini et al. (2016) [31], Bulejko et al. (2016) [32], Yue et al. (2015) [33] |
#1 | 58 | 0.895 | street dust | Lu et al. (2014) [25], Han et al. (2016) [34], Sun et al. (2015) [35], Keshavarzi et al. (2015) [36], Han et al. (2016) [37] |
#2 | 45 | 0.783 | potential health risk | Fu et al. (2015) [26], Varol & Davraz (2015) [38], Islam et al. (2015) [39] |
#3 | 42 | 0.969 | air pollution | Lai et al. (2013) [27], Morelli et al. (2016) [40], Arranz et al. (2014) [41], Baccini et al. (2013) [42], Izhar et al. (2016) [43] |
#4 | 40 | 0.985 | physical activity | Gerike et al. (2016) [28], Mansfield & Jacqueline (2015) [44], Gibson et al. (2015) [45], Zapata-Diomedi et al. (2016) [46] |
3.6.2. Timeline View (2017–2021)
Cluster ID | Size | Silhouette | Cluster Label (LLR) | Representative Publication |
---|---|---|---|---|
#0 | 121 | 0.847 | road dust | Moryani et al. (2020) [47], Faisal et al. (2021) [56], Chen et al. (2019) [57], Ahamad et al. (2021) [58], Shabanda et al. (2019) [59], Mondal & Singh (2021) [60], Jiang et al. (2018) [61], Othman & Latif (2020) [62], Heidari et al. (2021) [63], Shahab et al. (2020) [64], Wang et al. (2021) [65] |
#1 | 119 | 0.874 | source apportionment | Cai et al. (2019) [48], Duan et al. (2020) [66], Zhang et al. (2021) [67], Li et al. (2021) [68], Sun et al. (2020) [69], Tang et al. (2020) [70] |
#2 | 68 | 0.982 | drinking water | Hamed et al. (2018) [49], Qasemi et al. (2019) [71], Badeenezhad et al. (2021) [72], Radfard et al. (2019) [73], Mirzabeygi et al. (2018) [74] |
#3 | 63 | 0.962 | chemical fractionation | Sah et al. (2019) [50], Long et al. (2021) [75], Jan et al. (2018) [76], Guo et al. (2021) [77], Jiang et al. (2020) [78] |
#4 | 61 | 0.971 | volatile organic compounds | Gu et al. (2020) [51], Li et al. (2020) [79], Ding et al. (2020) [80], Tohid et al. (2019) [81], Xiong et al. (2020) [82], Wang et al. (2020) [83], Li et al. (2020) [84] |
#5 | 52 | 0.967 | air pollution | Lehtomaki et al. (2020) [52], Izquierdo et al. (2020) [85], Luo et al. (2020) [86], Giallouros et al. (2020) [87], Sacks et al. (2018) [88], Sohrabi et al. (2020) [89], Khomenko et al. (2021) [90], Gamarra et al. (2021) [91] |
#6 | 46 | 0.970 | polycyclic aromatic hydrocarbons | Najmeddin et al. (2019) [53], Abbasnejad et al. (2019) [92], Najmeddin et al. (2018) [93], Qishlaqi & Beiramali (2019) [94], Liang et al. (2019) [95] |
#7 | 45 | 0.904 | north China plain | Zhang et al. (2019) [54], Shen et al. (2019) [96], Zhang et al. (2019) [97], Luo et al. (2021) [98], Gao et al. (2019) [99] |
#8 | 37 | 0.969 | respiratory diseases | Geravandi et al. (2017) [55], Khaniabadi et al. (2017) [100] |
3.7. Structural Variation Analysis (SVA)
3.7.1. Articles with Transformative Potentials
3.7.2. Trajectories of Citations across Cluster Boundaries
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cave, B.; Pyper, R.; Fischerbonde, B.; Humboldtdachroeden, S.; Martinolmedo, P. Lessons from an international initiative to set and share good practice on human health in environmental impact assessment. Int. J. Environ. Res. Public Health 2021, 18, 1392. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.S.; Furu, P.; Viliani, F.; Cave, B.; Divall, M.; Ramesh, G.; Harris-Roxas, B.; Knoblauch, A.M. Current global health impact assessment practice. Int. J. Environ. Res. Public Health 2020, 17, 2988. [Google Scholar] [CrossRef] [PubMed]
- Simos, J.; Arrizabalaga, P. Using the synergies between strategic environmental evaluation and hia to advance the integration of environmental and health issues in public decision-making processes. Soz.-Und Prav. 2006, 51, 133. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.S.; Kim, K.Y.; Koh, K.W. Introduction of health impact assessment and healthy cities as a tool for tackling health inequality. J. Prev. Med. Public Health 2007, 40, 439. [Google Scholar] [CrossRef]
- Harris, P.; Harris-Roxas, B.; Wise, M.; Harris, L. Health impact assessment for urban and land-use planning and policy development: Lessons from practice. Socioecol. Pract. Res. 2010, 25, 531–541. [Google Scholar] [CrossRef]
- Hoshiko, M.; Hara, K.; Ishitake, T. Assessing the validity of health impact assessment predictions regarding a Japanese city’s transition to core city status: A monitoring review. Public Health 2012, 126, 168–176. [Google Scholar] [CrossRef]
- Forsyth, A.; Slotterback, C.S.; Krizek, K. Health impact assessment (hia) for planners: What tools are useful? Urb. Plan. Int. 2016, 24, 231–245. [Google Scholar] [CrossRef]
- Boldo, E.; Medina, S.; Tertre, A.L.; Hurley, F.; Mücke, H.G.; Ballester, F.; Aguilera, I. Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. Eur. J. Epidemiol. 2006, 21, 449–458. [Google Scholar] [CrossRef]
- Bacigalupe, A.; Esnaola, S.; Calderon, C.; Zuazagoitia, J.; Aldasoro, E. Health impact assessment of an urban regeneration project: Opportunities and challenges in the context of a southern European city. J. Epidemiol. Commun. Health 2010, 64, 950–955. [Google Scholar] [CrossRef]
- Keuken, M.; Zandveld, P.; Elshout, S.; Janssen, N.; Hoek, G. Air quality and health impact of PM10 and EC in the city of Rotterdam, the Netherlands in 1985–2008. Atmos. Environ. 2011, 45, 5294–5301. [Google Scholar] [CrossRef]
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and ozone health impacts and disparities in New York city: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, B.; Nichole, M.C.; Rezak, A.; Isabella, A.M. Short-term health impact assessment of urban PM10 in Bejaia city (Algeria). Can. Respir. J. 2016, 2016, 8209485. [Google Scholar]
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). J. Clean. Prod. 2017, 147, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, X. Research on the literature of green building based on the web of science: A scientometric analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Kukec, A.; Rumrich, I.K.; Rejc, T.; Hnninen, O. Methods of health risk and impact assessment at industrially contaminated sites: A systematic review. Epidemiol. Prev. 2018, 42, 49–58. [Google Scholar]
- Hood, W.W.; Wilson, C.S. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, J.; Li, C.; Chen, B.; Sun, Y. Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecol. Econ. 2019, 156, 293–305. [Google Scholar] [CrossRef]
- Zhao, D.; Strotmann, A. Analysis and visualization of citation networks. Synth. Lect. Inf. Concepts Retr. Serv. 2015, 7, 207. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Baur, L.A. A Framework to Explore the Knowledge Structure of Multidisciplinary Research Fields. PLoS ONE 2015, 10, e0123537. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Luo, J.; Wübbenhorst, M. Research on political instability, uncertainty and risk during 1953–2019: A scientometric review. Scientometrics 2020, 123, 1051–1076. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Wang, J.; Luo, Y. Knowledge domain and emerging trends on echinococcosis research: A scientometric analysis. Int. J. Environ. Res. Public Health 2019, 16, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Xie, X.; Ma, L.; Kan, H.; Zhou, Q. Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ. Sci. Pollut. Res. Int. 2014, 21, 2817–2825. [Google Scholar] [CrossRef]
- Lu, X.; Xing, W.; Wang, Y.; Hao, C.; Gao, P.; Yi, F. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef]
- Fu, Q.; Li, L.; Achal, V.; Jiao, A.; Liu, Y. Concentrations of heavy metals and arsenic in market rice grain and their potential health risks to the population of Fuzhou, China. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 117–128. [Google Scholar] [CrossRef]
- Lai, H.K.; Tsang, H.; Wong, M. Meta-analysis of adverse health effects due to air pollution in Chinese populations. BMC Public Health 2013, 13, 360. [Google Scholar] [CrossRef] [Green Version]
- Gerike, R.; Nazelle, A.D.; Nieuwenhuijsen, M.; Panis, L.I.; Götschi, T.; Anaya, E.; Avila-Palencia, I.; Boschetti, F.; Brand, C.; Dons, E. Tom Cole-HunterPhysical activity through sustainable transport approaches (Pasta): A study protocol for a multicentre project. BMJ Open 2016, 6, e009924. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Hu, X.; Yves, U.J.; Zhan, H.; Wu, Y. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol. Environ. Saf. 2014, 106, 11–18. [Google Scholar] [CrossRef]
- Tuyen, L.H.; Tue, N.M.; Takahashi, S.; Suzuki, G.; Viet, P.H.; Subramanian, A.; Bulbule, K.A.; Parthasarathy, P.; Ramanathan, A.; Tanabe, S.; et al. Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: Occurrence, distribution and in vitro toxicity evaluation. Environ. Pollut. 2014, 194, 272–280. [Google Scholar] [CrossRef]
- Hoseini, M.; Yunesian, M.; Nabizadeh, R.; Yaghmaeian, K.; Ahmadkhaniha, R.; Rastkari, N.; Parmy, S.; Faridi, S.; Rafiee, A.; Naddafi, K. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of Tehran, Iran. Environ. Sci. Pollut. Res. 2016, 23, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Bulejko, P.; Adamec, V.; Schüllerová, B.; Skeřil, R. Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: A 5-year study. Environ. Sci. Pollut. Res. 2016, 23, 20462–20473. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Yun, Y.; Gao, R.; Li, G.; Sang, N. Winter polycyclic aromatic hydrocarbon-bound particulate matter from peri-urban north china promotes lung cancer cell metastasis. Environ. Sci. Technol. 2015, 49, 14484. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lu, X.; Zhang, Q.; Wuyuntana; Hai, Q.; Pan, H. Grain-size distribution and contamination characteristics of heavy metal in street dust of Baotou, China. Environ. Earth Sci. 2016, 75, 468. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, N.; Liu, J.; Wang, Y.; Sun, C.; Liu, Q.; Wang, H.; Zhang, J. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China. Environ. Geochem. Health 2015, 37, 207–220. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Han, L.; Gao, B.; Wei, X.; Xu, D.; Gao, L. Spatial distribution, health risk assessment, and isotopic composition of lead contamination of street dusts in different functional areas of Beijing, China. Environ. Sci. Pollut. Res. 2016, 23, 3247–3255. [Google Scholar] [CrossRef]
- Varol, S.; Davraz, A. Evaluation of potential human health risk and investigation of drinking water quality in Isparta city center (Turkey). J. Water Health 2015, 14, 471–488. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Raknuzzaman, M. The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol. Environ. Saf. 2015, 122, 462–469. [Google Scholar] [CrossRef]
- Morelli, X.; Rieux, C.; Cyrys, J.; Forsberg, B.; Slama, R. Air pollution, health and social deprivation: A fine-scale risk assessment. Environ. Res. 2016, 147, 59–70. [Google Scholar] [CrossRef]
- Arranz, M.C.; Moreno, M.F.M.; Medina, A.A.; Capitán, M.A.; Vaquer, F.C.; Gómez, A.A. Health impact assessment of air pollution in Valladolid, Spain. BMJ Open 2014, 4, e005999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccini, M.; Biggeri, A.; Accetta, G.; Alessandrini, E.R.; Zero, F. Short-term impact of air pollution among Italian cities covered by the EpiAir2 project. Epidemiol. Prev. 2013, 37, 252. [Google Scholar] [PubMed]
- Izhar, S.; Goel, A.; Chakraborty, A.; Gupta, T. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 2016, 146, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, T.J.; Jacqueline, M. Health impacts of increased physical activity from changes in transportation infrastructure: Quantitative estimates for three communities. BioMed Res. Int. 2015, 2015, 812325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, J.M.; Rodriguez, D.; Dennerlein, T.; Mead, J.; Hasc, T.; Meacci, G.; Levin, S. Predicting urban design effects on physical activity and public health: A case study. Health Place 2015, 35, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Diomedi, B.; Herrera, A.; Veerman, J.L. The effects of built environment attributes on physical activity-related health and health care costs outcomes in Australia. Health Place 2016, 42, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Moryani, H.T.; Kong, S.; Du, J.; Bao, J. Health risk assessment of heavy metals accumulated on PM2.5 fractioned road dust from two cities of Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 7124. [Google Scholar] [CrossRef]
- Cai, L.M.; Jiang, H.H.; Luo, J. Metals in soils from a typical rapidly developing county, Southern China: Levels, distribution, and source apportionment. Environ. Sci. Pollut. Res. 2019, 26, 19282–19293. [Google Scholar] [CrossRef]
- Hamed, A.; Hamed, S.; Majid, R.; Abbas, A.; Bayram, H.; Hesam, A.; Adibzadeh, A. Data on investigating the nitrate concentration levels and quality of bottled water in Torbat-e Heydarieh, Khorasan Razavi province, Iran. Data Brief 2018, 20, 463–467. [Google Scholar]
- Sah, D.; Verma, P.K.; Kumari, K.M.; Lakhani, A. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environ. Geochem. Health 2019, 41, 1445–1458. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, B.; Li, Y.; Zhang, Y.; Feng, Y. Multi-scale volatile organic compound (voc) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environ. Pollut. 2020, 265, 115023. [Google Scholar] [CrossRef] [PubMed]
- Lehtomki, H.; Geels, C.; Brandt, J.; Rao, S.; Hnninen, O. Deaths attributable to air pollution in Nordic countries: Disparities in the estimates. Atmosphere 2020, 11, 467. [Google Scholar] [CrossRef]
- Najmeddin, A.; Keshavarzi, B. Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM10 and road deposited dust in Ahvaz Metropolis of Iran. Environ. Geochem. Health 2019, 41, 1267–1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, L.; Zhang, X.; Li, J.; Wang, W. Characteristics of PM2.5-bound PAHs at an urban site and a suburban site in Jinan in north China plain. Aerosol Air Qual. Res. 2019, 19, 871–884. [Google Scholar] [CrossRef]
- Geravandi, S.; Sicard, P.; Khaniabadi, Y.O.; Marco, A.D.; Sadeghi, S. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environ. Sci. Pollut. Res. 2017, 24, 18152–18159. [Google Scholar] [CrossRef]
- Faisal, M.; Wu, Z.; Wang, H.; Hussain, Z.; Azam, M.I. Human health risk assessment of heavy metals in the urban road dust of Zhengzhou metropolis, China. Atmosphere 2021, 12, 1213. [Google Scholar] [CrossRef]
- Chen, X.; Guo, M.; Feng, J.; Liang, S.; Han, D.; Cheng, J. Characterization and risk assessment of heavy metals in road dust from a developing city with good air quality and from Shanghai, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 11387–11398. [Google Scholar] [CrossRef]
- Ahamad, A.; Raju, N.J.; Madhav, S.; Gossel, W.; Ram, P.; Wycisk, P. Potentially toxic elements in soil and road dust around Sonbhadra industrial region, Uttar Pradesh, India: Source apportionment and health risk assessment. Environ. Res. 2021, 202, 111685. [Google Scholar] [CrossRef]
- Shabanda, I.S.; Koki, I.B.; Low, K.H.; Zain, S.M.; Bakar, N. Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: A health risk assessment. Environ. Sci. Pollut. Res. 2019, 26, 37193–37211. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, G. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ. Geochem. Health 2021, 43, 2081–2103. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, L.; Guang, A.; Mu, Z.; Zhan, H.; Wu, Y. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China. Environ. Geochem. Health 2018, 40, 2007–2020. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur city. Environ. Sci. Pollut. Res. 2020, 27, 11227–11245. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Darijani, T.; Alipour, A. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef] [PubMed]
- Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Xiao, H. Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment. Environ. Pollut. 2020, 266, 115419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Cheng, X. Status, spatial distribution, and health risk assessment of potentially harmful element from road dust in steel industry city, China. Arab. J. Geosci. 2021, 14, 318. [Google Scholar] [CrossRef]
- Duan, X.C.; Yu, H.H.; Ye, T.R.; Huang, Y.; Albanese, S. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China. Ecol. Indic. 2020, 112, 106085. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, A.; Wang, X.; Wang, L.; Wang, Q.; Wu, X.; Ma, Y. Risk assessment and source apportionment of heavy metals in soils from Handan city. Appl. Sci 2021, 11, 9615. [Google Scholar] [CrossRef]
- Li, P.; Wu, T.; Jiang, G.; Pu, L.; Li, Y.; Zhang, J.; Xu, F.; Xie, X. An integrated approach for source apportionment and health risk assessment of heavy metals in subtropical agricultural soils, Eastern China. Land 2021, 10, 1016. [Google Scholar] [CrossRef]
- Sun, T.; Huang, J.; Wu, Y.; Yuan, Y.; Xie, Y.; Fan, Z.; Zheng, Z. Risk assessment and source apportionment of soil heavy metals under different land use in a typical estuary alluvial island. Int. J. Environ. Res. Public Health 2020, 17, 4841. [Google Scholar] [CrossRef]
- Tang, J.; He, M.; Luo, Q.; Adeel, M.; Jiao, F. Heavy metals in agricultural soils from a typical mining city in China: Spatial distribution, source apportionment, and health risk assessment. Pol. J. Environ. Stud. 2020, 29, 1379–1390. [Google Scholar] [CrossRef]
- Qasemi, M.; Afsharnia, M.; Farhang, M.; Ghaderpoori, M.; Zarei, A. Spatial distribution of fluoride and nitrate in groundwater and its associated human health risk assessment in residents living in western Khorasan Razavi, Iran. Desalin. Water Treat. 2019, 170, 176–186. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Darabi, K.; Heydari, M.; Amrane, A.; Ghelichi-Ghojogh, M.; Parseh, I.; Darvishmotevalli, M.; Azadbakht, O.; Javanmardi, P. Temporal distribution and zoning of nitrate and fluoride concentrations in Behbahan drinking water distribution network and health risk assessment by using sensitivity analysis and Monte Carlo simulation. Int. J. Environ. Anal. Chem. 2021, 101, 1903455. [Google Scholar] [CrossRef]
- Radfard, M.M.; Yunesian, M.; Nodehi, R.N.; Biglari, H.; Nazmara, S.; Hadi, M.; Yousefi, N.; Yousefi, M.; Abbasnia, A.; Mahvi, A.H. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, southeastern province, Iran. Human Ecol. Risk Assess. 2018, 25, 949–965. [Google Scholar] [CrossRef]
- Mirzabeygi, M.; Yousefi, M.; Soleimani, H.; Mohammadi, A.A.; Mahvi, A.H.; Abbasnia, A. The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran. Data Brief 2018, 18, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; He, J.; Yang, X. Characteristics, emission sources and health risk assessment of trace elements in size-segregated aerosols during haze and non-haze periods at Ningbo, China. Environ. Geochem. Health 2021, 43, 2945–2963. [Google Scholar] [CrossRef]
- Jan, R.; Roy, R.; Yadav, S.; Satsangi, P.G. Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environ. Geochem. Health 2016, 40, 1–16. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Zhao, X.; Yin, B.; Liu, Y.; Wang, X.; Yang, W.; Geng, C.; Wang, X.; Bai, Z. Source Apportionment and Health Risk Assessment of Metal Elements in PM2.5 in Central Liaoning’s Urban Agglomeration. Atmosphere 2021, 12, 667. [Google Scholar] [CrossRef]
- Jiang, H.; Xiao, H.; Song, H.; Liu, J.; Wang, Z. A long-lasting winter haze episode in Xiangyang, central China: Pollution characteristics, chemical composition, and health risk assessment. Aerosol Air Qual. Res. 2020, 20, 2859–2873. [Google Scholar] [CrossRef]
- Li, Y.; Yin, S.; Yu, S.; Yuan, M.; Zhang, R. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China. Chemosphere 2020, 250, 126283. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, J.; Liu, Z.; Li, W.; Chen, J. Volatile organic compounds in Shihezi, China, during the heating season: Pollution characteristics, source apportionment, and health risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 16439–16450. [Google Scholar] [CrossRef]
- Tohid, L.; Sabeti, Z.; Sarbakhsh, P.; Benis, K.Z.; Shakerkhatibi, M.; Rasoulzadeh, Y.; Rahimian, R.; Darvishali, S. Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran. Atmos. Pollut. Res. 2018, 10, 556–563. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, G.; Hu, R.; Zhang, H.; Zhang, F. Distribution, sources, and health risk assessment of volatile organic compounds in Hefei city. Arch. Environ. Contam. Toxicol. 2020, 78, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Q.; Tong, D.; Wang, Q.; Tan, L. Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J. Environ. Sci. 2019, 93, 1–12. [Google Scholar] [CrossRef]
- Izquierdo, R.; Dos Santos, S.G.; Borge, R.; de la Paz, D.; Sarigiannis, D.; Gotti, A.; Boldo, E. Health impact assessment by the implementation of Madrid city air-quality plan in 2020. Environ. Res. 2020, 183, 109021. [Google Scholar] [CrossRef]
- Luo, H.; Guan, Q.; Lin, J.; Wang, Q.; Wang, N. Air pollution characteristics and human health risks in key cities of Northwest China. J. Environ. Manag. 2020, 269, 110791. [Google Scholar] [CrossRef]
- Giallouros, G.; Kouis, P.; Papatheodorou, S.I.; Woodcock, J.; Tainio, M. The long-term impact of restricting cycling and walking during high air pollution days on all-cause mortality: Health impact assessment study. Environ. Int. 2020, 140, 105679. [Google Scholar] [CrossRef]
- Sacks, J.D.; Lloyd, J.M.; Zhu, Y.; Anderton, J.; Jang, C.J.; Hubbell, B.; Fann, N. The environmental benefits mapping and analysis program—community edition (BenMAP-CE): A tool to estimate the health and economic benefits of reducing air pollution. Environ. Model. Softw. 2018, 104, 118–129. [Google Scholar] [CrossRef]
- Sohrabi, S.; Zietsman, J.; Khreis, H. Burden of disease assessment of ambient air pollution and premature mortality in urban areas: The role of socioeconomic status and transportation. Int. J. Environ. Res. Public Health 2020, 17, 1166. [Google Scholar] [CrossRef] [Green Version]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, 121–134. [Google Scholar] [CrossRef]
- Gamarra, A.R.; Lechón, Y.; Vivanco, M.G.; Garrido, J.L.; Martín, F.; Martín, F.; Theobald, M.R.; Gil, V.; Santiago, J.L. Benefit analysis of the 1st Spanish air pollution control programme on health impacts and associated externalities. Atmosphere 2020, 12, 32. [Google Scholar] [CrossRef]
- Abbasnejad, B.; Keshavarzi, B.; Mohammadi, Z.; Moore, F.; Abbasnejad, A. Characteristics, distribution, source apportionment, and potential health risk assessment of polycyclic aromatic hydrocarbons in urban street dust of Kerman Metropolis, Iran. Int. J. Environ. Res. Public Health 2019, 29, 668–685. [Google Scholar] [CrossRef] [PubMed]
- Najmeddin, A.; Moore, F.; Keshavarzi, B.; Sadegh, Z. Pollution, source apportionment and health risk of potentially toxic elements (ptes) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. J. Geochem. Explor. 2018, 190, 154–169. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Beiramali, F. Potential sources and health risk assessment of polycyclic aromatic hydrocarbons in street dusts of Karaj urban area, Northern Iran. J. Environ. Health Sci. Eng. 2019, 17, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liang, H.; Rao, Z.; Hong, X. Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, north china: Spatial distribution, sources and potential human health risk assessment. Chemosphere 2019, 234, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Liu, Z.; Chen, X.; Wang, Y.; Wang, L.; Liu, Y.; Li, X. Atmospheric levels, variations, sources and health risk of pm2.5-bound polycyclic aromatic hydrocarbons during winter over the north China plain. Sci. Total Environ. 2019, 655, 581–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Gao, Y.; Chen, J.; Wang, W. Comparative study of PAHs in PM1 and PM2.5 at a background site in the north China plain. Aerosol Air Qual. Res. 2019, 19, 2281–2293. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Ji, Y.; Ren, Y.; Gao, F.; Zhang, H.; Zhang, L.; Yu, Y.; Li, H. Characteristics and health risk assessment of PM2.5-bound PAHs during heavy air pollution episodes in winter in urban area of Beijing, China. Atmosphere 2021, 12, 323. [Google Scholar] [CrossRef]
- Gao, P.; Hu, J.; Song, J.; Chen, X.; Xing, B. Inhalation bioaccessibility of polycyclic aromatic hydrocarbons in heavy PM2.5 pollution days: Implications for public health risk assessment in northern China. Environ. Pollut. 2019, 255, 113296. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Fanelli, R.; De Marco, A.; Daryanoosh, S.M.; Kloog, I.; Hopke, P.K.; Conti, G.O.; Ferrante, M.; Mohammadi, M.J.; Babaei, A.A.; et al. Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the middle eastern dust storms. Environ. Sci. Pollut. R. 2017, 24, 16860–16868. [Google Scholar] [CrossRef]
- Chen, C. Predictive effects of structural variation on citation counts. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A bibliometric analysis of ecosystem services evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, 23503–23513. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Zhang, J.Q.; Xu, D.M.; Tian, Q.; Qi, S.H. Contamination characteristics of heavy metals in particle size fractions from street dust from an industrial city, central China. Air Qual. Atmos. Health 2020, 13, 871–883. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, J.; Chen, Y.; Ma, Q.; Peng, J.; Rong, G. Pollution, sources and human health risk assessment of potentially toxic elements in different land use types under the background of industrial cities. Sustainability 2020, 12, 2121. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cai, L.; Wang, Q.; Hu, G.; Chen, L. A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: A case study from a large Cu smelter in central China. Catena 2021, 196, 104930. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L. Twenty-year span of global coronavirus research trends: A bibliometric analysis. Int. J. Environ. Res. Public Health 2020, 17, 3082. [Google Scholar] [CrossRef]
- Pereira, C.; Perisse, A.R.S.; Knoblauch, A.M.; Utzinger, J.; Hacon, S.D.S.; Winkler, M.S. Health impact assessment in Latin American countries: Current practice and prospects. Environ. Impact Asses. Rev. 2017, 65, 175–185. [Google Scholar] [CrossRef]
- Green, L.; Gray, B.J.; Ashton, K. Using health impact assessments to implement the sustainable development goals in practice: A case study in Wales. Impact Assess. Proj. Apprais. 2020, 38, 214–224. [Google Scholar] [CrossRef]
- Claudio, F.; Rijke, K.D.; Page, A. The csg arena: A critical review of unconventional gas developments and best-practice health impact assessment in Queensland, Australia. Impact Assess. Proj. Apprais. 2018, 36, 105–114. [Google Scholar] [CrossRef]
- Roué-Le Gall, A.; Jabot, F. Health impact assessment on urban development projects in france: Finding pathways to fit practice to context. Glob. Health Promot. 2017, 24, 25–34. [Google Scholar] [CrossRef]
- Iungman, T.; Khomenko, S.; Nieuwenhuijsen, M.; Barboza, E.P.; Mueller, N. The impact of urban and transport planning on health: Assessment of the attributable mortality burden in Madrid and Barcelona and its distribution by socioeconomic status. Environ. Res. 2021, 196, 110988. [Google Scholar] [CrossRef] [PubMed]
- Thondoo, M.; Mueller, N.; Rojas-Rueda, D.; Vries, D.D.; Nieuwenhuijsen, M.J. Participatory quantitative health impact assessment of urban transport planning: A case study from eastern Africa. Environ. Int. 2020, 144, 106027. [Google Scholar] [CrossRef] [PubMed]
- Gamache, S.; Diallo, T.A.; Shankardass, K.; Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: The experience of Quebec city (Canada). Int. J. Environ. Res. Public Health 2020, 17, 7556. [Google Scholar] [CrossRef] [PubMed]
WOS Categories | Record Count | Publication Titles | Record Count | Authors | Record Count |
---|---|---|---|---|---|
Environmental Sciences | 1640 | Environmental Science and Pollution Research | 161 | Li J | 27 |
Public Environmental Occupational Health | 408 | Science of the Total Environment | 146 | Wang Q | 27 |
Engineering Environmental | 233 | International Journal of Environmental Research and Public Health | 106 | Radfard M | 25 |
Water Resources | 217 | Environmental Geochemistry and Health | 101 | Rojas-rueda D | 24 |
Toxicology | 178 | Human and Ecological Risk Assessment | 93 | Latif MT | 21 |
Meteorology Atmospheric Sciences | 115 | Ecotoxicology and Environmental Safety | 88 | Mohammadi MJ | 21 |
Biodiversity Conservation | 99 | Environmental Pollution | 81 | Lu XW | 20 |
Multidisciplinary Sciences | 76 | Chemosphere | 80 | Zhang H | 19 |
Geosciences Multidisciplinary | 58 | Atmospheric Environment | 43 | Zhang JQ | 18 |
Chemistry Analytical | 49 | Environmental Research | 43 | Li F | 17 |
Institution Name | Total Number of Articles | Total References | Average Cited Times | Total Number of First Authors | Number of Citations of the First Author | Average Citation of the First Author |
---|---|---|---|---|---|---|
Univ Tehran Med Sci | 107 | 801 | 7.49 | 30 | 276 | 9.20 |
Beijing Normal Univ | 56 | 617 | 11.02 | 35 | 301 | 8.60 |
Chinese Acad Sci | 215 | 539 | 2.51 | 84 | 217 | 2.58 |
Ahvaz Jundishapur Univ Med Sci | 106 | 437 | 4.12 | 20 | 109 | 5.45 |
Univ Kebangsaan Malaysia | 64 | 356 | 5.56 | 19 | 112 | 5.89 |
Chinese Res Inst Environm Sci | 53 | 260 | 4.91 | 19 | 171 | 9.00 |
Shiraz Univ | 25 | 256 | 10.24 | 15 | 154 | 10.27 |
China Univ Geosci | 54 | 211 | 3.91 | 26 | 90 | 3.46 |
Zhejiang Univ | 30 | 200 | 6.67 | 12 | 157 | 13.08 |
Shahid Beheshti Univ Med Sci | 50 | 184 | 3.68 | 3 | 6 | 2.00 |
Publication Titles | Total Number of Articles | Total References | Average Cited Times |
---|---|---|---|
Science of the Total Environment | 146 | 742 | 5.08 |
Ecotoxicology and Environmental Safety | 88 | 565 | 6.42 |
Environmental Science and Pollution Research | 147 | 429 | 2.92 |
Chemosphere | 80 | 421 | 5.26 |
Human and Ecological Risk Assessment | 93 | 257 | 2.76 |
Environmental Geochemistry and Health | 90 | 242 | 2.69 |
Atmospheric Environment | 43 | 241 | 5.60 |
Environmental Pollution | 81 | 195 | 2.41 |
Environment International | 41 | 187 | 4.56 |
International Journal of Environmental Research and Public Health | 106 | 179 | 1.69 |
Author | Total Number of Articles | Total References | Average Cited Times | Total Number of First Authors | Number of Citations of the First Author |
---|---|---|---|---|---|
Yousefi M | 15 | 207 | 13.8 | 5 | 79 |
Mahvi AH | 14 | 186 | 13.29 | 0 | 0 |
Lu XW | 20 | 157 | 7.85 | 3 | 31 |
Keshavarzi B | 13 | 148 | 11.38 | 3 | 71 |
Nabizadeh R | 10 | 141 | 14.1 | 0 | 0 |
Radfard M | 19 | 139 | 7.32 | 5 | 37 |
Teng YG | 6 | 134 | 22.33 | 0 | 0 |
Rojas-Rueda D | 24 | 127 | 5.29 | 3 | 34 |
Chen HY | 5 | 127 | 25.4 | 2 | 124 |
Wang YY | 9 | 125 | 13.89 | 1 | 0 |
Title | Strength | Begin | End | 2012–2016 |
---|---|---|---|---|
Use of health impact assessment in the United States: 27 case studies, 1999–2007 (Dannenberg, 2008) | 3.87 | 2012 | 2013 | ▃▃▂▂▂ |
Health effects of fine particulate air pollution: Lines that connect (Chow et al., 2006) | 3.22 | 2012 | 2014 | ▃▃▃▂▂ |
Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities (Ravindra et al., 2006) | 2.25 | 2012 | 2014 | ▃▃▃▂▂ |
Use of health impact assessment in incorporating health considerations in decision making (Davenport et al., 2006) | 2.21 | 2012 | 2013 | ▃▃▂▂▂ |
The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds (den Berg et al., 2006) | 2.21 | 2012 | 2013 | ▃▃▂▂▂ |
Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment (Ferreira-Baptista & Migu et al., 2005) | 2.21 | 2012 | 2013 | ▃▃▂▂▂ |
Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain) (De Miguel et al., 2007) | 2.84 | 2013 | 2016 | ▂▃▃▃▃ |
Health risk assessment for traffic policemen exposed to polycyclic aromatic hydrocarbons (PAHs) in Tianjin, China (Hu et al., 2007) | 2.33 | 2013 | 2014 | ▂▃▃▂▂ |
Apheis: Health Impact Assessment of Long-term Exposure to PM2.5 in 23 European Cities (Boldo et al., 2006) | 1.94 | 2013 | 2014 | ▂▃▃▂▂ |
The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review (Cai et al., 2008) | 1.94 | 2013 | 2014 | ▂▃▃▂▂ |
Emission of polycyclic aromatic hydrocarbons in China (Xu et al., 2006) | 1.94 | 2013 | 2014 | ▂▃▃▂▂ |
Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples (Liao et al., 2006) | 1.94 | 2013 | 2014 | ▂▃▃▂▂ |
Distribution, availability and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health (Luo et al., 2011) | 1.95 | 2014 | 2016 | ▂▂▃▃▃ |
Title | Strength | Begin | End | 2012–2021 |
---|---|---|---|---|
Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China (Zheng et al., 2010) | 16.11 | 2017 | 2018 | ▃▃▂▂▂ |
A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China (Wei et al., 2010) | 12.64 | 2017 | 2018 | ▃▃▂▂▂ |
Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China (Lu et al., 2010) | 9.56 | 2017 | 2018 | ▃▃▂▂▂ |
Study of ground-level ozone and its health risk assessment in residents in Ahvaz City, Iran during 2013 (Yari et al., 2016) | 6.88 | 2017 | 2018 | ▃▃▂▂▂ |
Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city (Luo et al., 2011) | 6.49 | 2017 | 2018 | ▃▃▂▂▂ |
A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China (Shi et al., 2011) | 5.97 | 2017 | 2019 | ▃▃▃▂▂ |
Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment (Wang et al., 2011) | 5.46 | 2017 | 2019 | ▃▃▃▂▂ |
Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China (Hu et al., 2011) | 5.46 | 2017 | 2019 | ▃▃▃▂▂ |
Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China (Huang et al., 2016) | 5.35 | 2017 | 2018 | ▃▃▂▂▂ |
An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013 (Goudarzi et al., 2016) | 4.96 | 2017 | 2018 | ▃▃▂▂▂ |
Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China (Zheng et al., 2010) | 4.96 | 2017 | 2018 | ▃▃▂▂▂ |
Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk (Peng et al., 2011) | 4.94 | 2017 | 2019 | ▃▃▃▂▂ |
Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China (Sun et al., 2013) | 4.58 | 2017 | 2018 | ▃▃▂▂▂ |
Exposure to PM10, NO2 and O3 and impacts on human health (Khaniabadi et al., 2017) | 4.2 | 2017 | 2018 | ▃▃▂▂▂ |
Cardiovascular and respiratory mortality attributed to ground-level ozone in Ahvaz, Iran (Goudarzi et al., 2015) | 4.2 | 2017 | 2018 | ▃▃▂▂▂ |
Impact of Middle Eastern Dust storms on human health (Khaniabadi et al., 2017) | 4.2 | 2017 | 2018 | ▃▃▂▂▂ |
Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran (Mirzabeygi et al., 2017) | 5.18 | 2018 | 2019 | ▂▃▃▂▂ |
The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran (Mirzabeygi et al., 2018) | 4.75 | 2018 | 2019 | ▂▃▃▂▂ |
Drinking water quality and human health risk in Charsadda district, Pakistan (Khan et al., 2013) | 3.16 | 2018 | 2019 | ▂▃▃▂▂ |
Risk assessment and implication of human exposure to road dust heavy metals in Jeddah, Saudi Arabia (Shabbaj et al., 2018) | 3.16 | 2018 | 2019 | ▂▃▃▂▂ |
Association of Hypertension, Body Mass Index and Waist Circumference with Fluoride Intake; Water Drinking in Residents of Fluoride Endemic Areas, Iran (Yousefi et al., 2018) | 3.16 | 2018 | 2019 | ▂▃▃▂▂ |
Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health (Callen et al., 2014) | 2.87 | 2018 | 2019 | ▂▃▃▂▂ |
Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods (Chen et al., 2012) | 2.87 | 2018 | 2019 | ▂▃▃▂▂ |
Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China (Zhango et al., 2012) | 3.53 | 2019 | 2021 | ▂▂▃▃▃ |
Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water (Fallahzadeh et al., 2018) | 3.31 | 2019 | 2021 | ▂▂▃▃▃ |
Probabilistic risk assessment of Chinese residents’ exposure to fluoride in improved drinking water in endemic fluorosis areas (Zhang et al., 2017) | 3.09 | 2019 | 2021 | ▂▂▃▃▃ |
Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution and risk assessment (Miri et al., 2016) | 3.09 | 2019 | 2021 | ▂▂▃▃▃ |
Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India (Masih et al., 2016) | 2.87 | 2019 | 2021 | ▂▂▃▃▃ |
Pollution, ecological-health risks and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau (Wu et al., 2018) | 2.65 | 2019 | 2021 | ▂▂▃▃▃ |
Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment (Hajizadeh et al., 2018) | 2.2 | 2019 | 2021 | ▂▂▃▃▃ |
Year | M | C-L | C-D | Title |
---|---|---|---|---|
2020 | 98.94 | 21.2 | 0.31 | The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks (Nawrot et al., 2020) |
2020 | 98.87 | 33.48 | 0.06 | Contamination characteristics of heavy metals in particle size fractions from street dust from an industrial city, Central China (Zhong et al., 2020) |
2020 | 98.27 | 75.03 | 0.06 | Pollution, sources and human health risk assessment of potentially toxic elements in different land use types under the background of industrial cities (Xia et al., 2020) |
2020 | 97.99 | 19.56 | 0.06 | Characteristics and health risk assessment of heavy metals in street dust for children in Jinhua, China (Bartholomew et al., 2020) |
2020 | 97.87 | 59.56 | 0.06 | Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment (Shahab et al., 2020) |
2020 | 97.46 | 15.64 | 0.08 | Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China (Duan et al., 2020) |
2020 | 97.4 | 9.11 | 0.08 | Spatial distribution of pollution characteristics and human health risk assessment of exposure to heavy elements in road dust from different functional areas of Zhengzhou, China (Wang et al., 2020) |
2020 | 97.16 | 10.86 | 0.07 | Hazard, ecological and human health risk assessment of heavy metals in street dust in Dezful, Iran (Sadeghdoust et al., 2020) |
2021 | 97.13 | −14.03 | 0.10 | Potentially toxic elements in soil and road dust around Sonbhadra industrial region, Uttar Pradesh, India: Source apportionment and health risk assessment (Ahamad et al., 2021) |
2020 | 97.11 | 12.5 | 0.06 | Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia (Konstantinova et al., 2020) |
2021 | 96.88 | −17.27 | 0.03 | Contamination and health risk assessment of potentially harmful elements associated with roadside dust in Dhanbad India (Patel and Jain, 2021) |
2021 | 96.75 | −18.19 | 0.02 | Heavy metals in indoor dust across China: Occurrence, sources and health risk assessment (Liu et al., 2021) |
2021 | 96.62 | −20.82 | 0.04 | A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: A case study from a large Cu smelter in central China (Wang et al., 2021) |
2021 | 96.62 | −17.14 | 0.01 | Risk and sources of heavy metals and metalloids in dust from university campuses: A case study of Xi’an, China (Fan et al., 2021) |
2020 | 96.57 | 25.28 | 0.08 | Pollution characteristics, sources and health risk assessments of urban road dust in Kuala Lumpur City (Othman and Latif, 2020) |
2021 | 96.49 | −14.5 | 0.01 | Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China (Han et al., 2021) |
2021 | 96.41 | −25.84 | 0 | Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment (Heidari et al., 2021) |
2021 | 96.33 | −14.85 | 0.04 | Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district (Zhu et al., 2021) |
2021 | 95.71 | −17.24 | 0.01 | Contamination, distribution and health risk assessment of risk elements in topsoil for amusement parks in Xi’an, China (Guo et al., 2021) |
2021 | 95.58 | −9.36 | 0.04 | Urban street dust in the Middle East oldest oil refinery zone: Oxidative potential, source apportionment and health risk assessment of potentially toxic elements (Naraki et al., 2021) |
2021 | 94.97 | −13.77 | 0.06 | Water quality and health risk assessment based on hydrochemical characteristics of tap and large-size bottled water from the main cities and towns in Guanzhong Basin, China (Deng et al., 2021) |
2021 | 94.77 | −28.26 | 0.01 | Human health risk assessment of heavy metals in the urban road dust of Zhengzhou metropolis, China (Faisal et al., 2021) |
2021 | 94.75 | −14.34 | 0.08 | Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India (Mondal and Singh, 2021) |
2021 | 92.61 | −30.86 | 0.08 | Status, spatial distribution and health risk assessment of potentially harmful element from road dust in steel industry city, China (Wang et al., 2021) |
2021 | 91.84 | −17.22 | 0.01 | Pollution, human health risk assessment and spatial distribution of toxic metals in urban soil of Yazd City, Iran (Soltani-Gerdefaramarzi et al., 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Deng, Z.; Zhong, S.; Deng, M. Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5957. https://doi.org/10.3390/ijerph19105957
Luo W, Deng Z, Zhong S, Deng M. Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2022; 19(10):5957. https://doi.org/10.3390/ijerph19105957
Chicago/Turabian StyleLuo, Wenbing, Zhongping Deng, Shihu Zhong, and Mingjun Deng. 2022. "Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis" International Journal of Environmental Research and Public Health 19, no. 10: 5957. https://doi.org/10.3390/ijerph19105957
APA StyleLuo, W., Deng, Z., Zhong, S., & Deng, M. (2022). Trends, Issues and Future Directions of Urban Health Impact Assessment Research: A Systematic Review and Bibliometric Analysis. International Journal of Environmental Research and Public Health, 19(10), 5957. https://doi.org/10.3390/ijerph19105957