Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rubin, B.S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J. Steroid. Biochem. Mol. Bio. 2011, 127, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Balistrieri, A.; Hobohm, L.; Srivastava, T.; Meier, A.; Corriden, R. Alterations in human neutrophil function caused by Bisphenol A. Am. J. Physiol. Cell Physiol. 2018, 315, C636–C642. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.P. Determination of Bisphenol A in barreled drinking water by a SPE-LC-MS method. J. Environ. Sci. Health Part A 2020, 55, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Michałowicz, J. Bisphenol A—Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef] [PubMed]
- Rytel, L.; Gonkowski, S. The influence of Bisphenol A on the nitrergic nervous structures in the domestic porcine uterus. Int. J. Mol. Sci. 2020, 21, 4543. [Google Scholar] [CrossRef] [PubMed]
- Reale, E.; Vernez, D.; Hopf, N.B. Skin absorption of Bisphenol A and its alternatives in thermal paper. Ann. Work Expo. Health 2021, 65, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, K.; Gonkowski, S. Neurochemical characterization of the enteric neurons within the porcine jejunum in physiological conditions and under the influence of Bisphenol A (BPA). Neurogastroenterol Motil. 2019, 31, e13580. [Google Scholar] [CrossRef]
- Hafezi, S.A.; Abdel-Rahman, W.M. The endocrine disruptor Bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy. Curr. Mol. Pharmacol. 2019, 12, 230–238. [Google Scholar] [CrossRef]
- Monneret, C. What is an endocrine disruptor? Comptes Rendus Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef]
- Rytel, L. The influence of Bisphenol A (BPA) on neuregulin 1-like immunoreactive nerve fibers in the wall of porcine uterus. Int. J. Mol. Sci. 2018, 19, 2962. [Google Scholar] [CrossRef]
- Szymanska, K.; Calka, J.; Gonkowski, S. Nitric oxide as an active substance in the enteric neurons of the porcine digestive tract in physiological conditions and under intoxication with Bisphenol A (BPA). Nitric Oxide 2018, 80, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; et al. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol. 2019, 17, 1109–1132. [Google Scholar] [CrossRef] [PubMed]
- Seachrist, D.D.; Bonk, K.W.; Ho, S.M.; Prins, G.S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of Bisphenol A. Reprod. Toxicol. 2016, 59, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Wang, H.; Zhou, L.; Fan, D.; Shi, L.; Ji, G.; Gu, A. Oxidative stress in Bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. Sci. Total Environ. 2020, 731, 139190. [Google Scholar] [CrossRef]
- Gear, R.; Kendziorski, J.A.; Belcher, S.M. Effects of Bisphenol A on incidence and severity of cardiac lesions in the NCTR-Sprague-Dawley rat: A CLARITY-BPA study. Toxicol. Lett. 2017, 275, 123–135. [Google Scholar] [CrossRef]
- Yan, S.; Chen, Y.; Dong, M.; Song, W.; Belcher, S.M.; Wang, H.S. Bisphenol A and 17β-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS ONE 2011, 6, e25455. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Hong, K.; Wang, H.S. Progesterone protects against Bisphenol A-induced arrhythmias in female rat cardiac myocytes via rapid signaling. Endocrinology 2017, 158, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Bruno, K.A.; Mathews, J.E.; Yang, A.L.; Frisancho, J.A.; Scott, A.J.; Greyner, H.D.; Molina, F.A.; Greenaway, M.S.; Cooper, G.M.; Bucek, A.; et al. BPA alters estrogen receptor expression in the heart after viral infection activating cardiac mast cells and t cells leading to perimyocarditis and fibrosis. Front. Endocrinol. (Lausanne) 2019, 10, 598. [Google Scholar] [CrossRef]
- Asahi, J.; Kamo, H.; Baba, R.; Doi, Y.; Yamashita, A.; Murakami, D.; Hanada, A.; Hirano, T. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci. 2010, 87, 431–438. [Google Scholar] [CrossRef]
- Figueiredo, L.S.; Oliveira, K.M.; Freitas, I.N.; Silva Jr, J.A.; Silva, J.N.; Favero-Santos, B.C.; Bonfleur, M.L.; Carneiro, E.M.; Ribeiro, R.A. Bisphenol-A exposure worsens hepatic steatosis in ovariectomized mice fed on a high-fat diet: Role of endoplasmic reticulum stress and fibrogenic pathways. Life Sci. 2020, 256, 118012. [Google Scholar] [CrossRef] [PubMed]
- Saura, M.; Marquez, S.; Reventun, P.; Olea-Herrero, N.; Arenas, M.I.; Moreno-Gómez-Toledano, R.; Gómez-Parrizas, M.; Muñóz-Moreno, C.; González-Santander, M.; Zaragoza, C.; et al. Oral administration of Bisphenol A induces high blood pressure through angiotensin II/CaMKII-dependent uncoupling of eNOS. FASEB J. 2014, 28, 4719–4728. [Google Scholar] [CrossRef] [PubMed]
- Rasdi, Z.; Kamaludin, R.; Rahim, S.A.; Fuad, S.B.S.A.; Othman, M.H.D.; Siran, R.; Mohd Nor, N.S.; Hasani, N.A.H.; Kadir, S.H.S.A. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Sci. Rep. 2020, 10, 5882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, S.; Rao, X.; Ye, J.; Ling, Y.; Mi, S.; Chen, H.; Fan, C.; Li, Y. Relationship between urinary Bisphenol A levels and cardiovascular diseases in the U.S. adult population, 2003–2014. Ecotoxicol. Environ. Saf. 2020, 192, 110300. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Osborne, N.J.; Henley, W.E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Luben, R.; Khaw, K.T.; Wareham, N.J.; et al. Urinary Bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 2012, 125, 1482–1490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Shan, C.; Wang, Y.; Qian, L.L.; Jia, D.D.; Zhang, Y.F.; Hao, X.D.; Xu, H.M. Cardiovascular toxicity and mechanism of Bisphenol A and emerging risk of Bisphenol S. Sci. Total Environ. 2020, 723, 137952. [Google Scholar] [CrossRef]
- Murata, M.; Kang, J.H. Bisphenol A (BPA) and cell signaling pathways. Biotechnol. Adv. 2018, 36, 311–327. [Google Scholar] [CrossRef]
- Argunhan, F.; Brain, S.D. The vascular-dependent and -independent actions of calcitonin gene-related peptide in cardiovascular disease. Front. Physiol. 2022, 13, 833645. [Google Scholar] [CrossRef]
- Costa, E.D.; Rezende, B.A.; Cortes, S.F.; Lemos, V.S. Neuronal nitric oxide synthase in vascular physiology and diseases. Front. Physiol. 2016, 7, 206. [Google Scholar] [CrossRef] [Green Version]
- Timotin, A.; Pisarenko, O.; Sidorova, M.; Studneva, I.; Shulzhenko, V.; Palkeeva, M. Myocardial protection from ischemia/reperfusion injury by exogenous galanin fragment. Oncotarget 2017, 8, 21241–21252. [Google Scholar] [CrossRef] [Green Version]
- Serebryakova, L.; Pal’keeva, M.; Studneva, I.; Molokoedov, A.; Veselova, O.; Ovchinnikov, M. Galanin and its N-terminal fragments reduce acute myocardial infarction in rats. Peptides 2019, 111, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Dvoráková, M.C. Cardioprotective role of the VIP signaling system. Drug News Perspect. 2005, 18, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Alkayed, N.J.; Gloshani, K.J.; Traystman, R.J.; West, G.A. Cocaine- and amphetamine-regulated transcript (CART) peptide: A vasoactive role in the cerebral circulation. J. Cereb. Blood Flow Metab. 2005, 25, 1376–1385. [Google Scholar] [CrossRef] [Green Version]
- Rytel, L.; Całka, J. Aspirin administration affects neurochemical characterization of substance p-like immunoreactive (sp-li) nodose ganglia neurons supplying the porcine stomach. Biomed. Res. Int. 2020, 2020, 1049179. [Google Scholar] [CrossRef]
- Conrad, M.S.; Johnson, R.W. The domestic piglet: An important model for investigating the neurodevelopmental consequences of early life insults. Annu. Rev. Anim. Biosci. 2015, 3, 245–264. [Google Scholar] [CrossRef]
- Lelovas, P.P.; Kostomitsopoulos, N.G.; Xanthos, T.T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 432–438. [Google Scholar] [PubMed]
- Cullen, J.M.; Lu, G.; Shannon, A.H.; Su, G.; Sharma, A.; Salmon, M.; Fashandi, A.Z.; Spinosa, M.D.; Montgomery, W.G.; Johnston, W.F.; et al. A novel swine model of abdominal aortic aneurysm. J. Vasc. Surg. 2019, 70, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Fuxe, K.; Sedva, G. The distribution of adrenergic nerve fibres to the blood vessels in skeletal muscle. Acta Physiol. Scand. 1965, 64, 75–86. [Google Scholar] [CrossRef]
- Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of environmental toxin exposure on male fertility potential. Transl. Androl. Urol. 2020, 9, 2797–2813. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Xu, S.; Zhou, Y.; Zhao, H.; Li, Y.; Xiong, C.; Sun, X.; Liu, H.; Liu, W.; et al. Prenatal exposure to Bisphenol A and its alternatives and child neurodevelopment at 2 years. J. Hazard. Mater. 2020, 388, 121774. [Google Scholar] [CrossRef]
- Di Paola, D.; Capparucci, F.; Lanteri, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; D'Amico, R.; Fusco, R.; Impellizzeri, D.; Cuzzocrea, S.; et al. Combined toxicity of xenobiotics Bisphenol A and heavy metals on zebrafish embryos (Danio rerio). Toxics 2021, 9, 9–344. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Gagné, M.; Nong, A.; Aylward, L.L.; Hays, S.M. Biomonitoring equivalents for Bisphenol A (BPA). Regul. Toxicol. Pharmacol. 2010, 58, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Hengstler, J.G.; Foth, H.; Gebel, T.; Kramer, P.J.; Lilienblum, W.; Schweinfurth, H.; Völkel, W.; Wollin, K.M.; Gundert-Remy, U. Critical evaluation of key evidence on the human health hazards of exposure to Bisphenol A. Crit. Rev. Toxicol. 2011, 41, 263–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santovito, A.; Cannarsa, E.; Schleicherova, D.; Cervella, P. Clastogenic effects of Bisphenol A on human cultured lymphocytes. Hum. Exp. Toxicol. 2018, 37, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Rytel, L.; Gonkowski, S.; Janowski, T.; Wojtkiewicz, J.; Pomianowski, A. The neurochemical characterization of parasympathetic nerve fibers in the porcine uterine wall under physiological conditions and after exposure to Bisphenol A (BPA). Neurotox. Res. 2019, 35, 867–882. [Google Scholar] [CrossRef] [Green Version]
- González, N.; Marquès, M.; Cunha, S.C.; Fernandes, J.O.; Domingo, J.L.; Nadal, M. Biomonitoring of co-exposure to bisphenols by consumers of canned foodstuffs. Environ. Int. 2020, 140, 105760. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Sheffield, P.E.; Chinn, C.; Edelstein, B.L.; Landrigan, P.J. Bisphenol A and related compounds in dental materials. Pediatrics 2010, 126, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Smedh, U.; Scott, K.A.; Moran, T.H. Fourth ventricular CART peptide induces c-fos in the area postrema and nucleus of the solitary tract via a CRF-receptor dependent mechanism. Neurosci. Lett. 2015, 609, 124–128. [Google Scholar] [CrossRef]
- Matsumura, K.; Tsuchihashi, T.; Abe, I. Central human cocaine- and amphetamine-regulated transcript peptide 55-102 increases arterial pressure in conscious rabbits. Hypertension 2001, 38, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Hong, Y.C. Bisphenol A, hypertension, and cardiovascular diseases: Epidemiological, laboratory, and clinical trial evidence. Curr. Hypertens. Rep. 2016, 18, 11. [Google Scholar] [CrossRef]
- Bharne, A.P.; Upadhya, M.A.; Shelkar, G.P.; Singru, P.S.; Subhedar, N.K.; Kokare, D.M. Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology 2013, 67, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Ardeshiri, A.; Jacks, R.; Yang, S.; Hurn, P.D.; Alkayed, N.J. Mitochondrial mechanism of neuroprotection by CART. Eur. J. Neurosci. 2007, 26, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Chen, Y.; Li, J.; Liu, Z.; Wang, Z.; Chen, J.; Cao, W.; Xu, Y. Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav. Immun. 2011, 25, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Gonkowski, S. Bisphenol A (BPA)-induced changes in the number of serotonin-positive cells in the mucosal layer of porcine small intestine-the preliminary studies. Int. J. Mol. Sci. 2020, 21, 1079. [Google Scholar] [CrossRef] [Green Version]
- Meli, R.; Monnolo, A.; Annunziata, C.; Pirozzi, C.; Ferrante, M.C. Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants 2020, 9, 405. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Q.; Chen, H.; Jiang, Y.; Gong, P. The protective role of calcitonin gene-related peptide (CGRP) in high-glucose-induced oxidative injury in rat aorta endothelial cells. Peptides 2019, 121, 170121. [Google Scholar] [CrossRef]
- Abushik, P.A.; Bart, G.; Korhonen, P.; Leinonen, H.; Giniatullina, R.; Sibarov, D.A.; Levonen, A.L.; Malm, T.; Antonov, S.M.; Giniatullin, R. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia 2017, 37, 1373–1383. [Google Scholar] [CrossRef]
- Bowen, E.J.; Schmidt, T.W.; Firm, C.S.; Russo, A.F.; Durham, P.L. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons. J. Neurochem. 2006, 96, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Wisskirchen, F.M.; Gray, D.W.; Marshall, I. Receptors mediating CGRP-induced relaxation in the rat isolated thoracic aorta and porcine isolated coronary artery differentiated by h(alpha) CGRP(8-37). Br. J. Pharmacol. 1999, 128, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Iwatani, Y.; Kosugi, K.; Isobe-Oku, S.; Atagi, S.; Kitamura, Y.; Kawasaki, H. Endothelium removal augments endothelium-independent vasodilatation in rat mesenteric vascular bed. Br. J. Pharmacol. 2008, 154, 32–40. [Google Scholar] [CrossRef]
- Feiteiro, J.; Mariana, M.; Glória, S.; Cairrao, E. Inhibition of L-type calcium channels by Bisphenol A in rat aorta smooth muscle. J. Toxicol. Sci. 2018, 43, 579–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Li, M.; Wu, C.; Zhou, C.; Zhang, J.; Zhu, Q.; Shen, T. Bisphenol A promotes macrophage proinflammatory subtype polarization via upregulation of IRF5 expression in vitro. Toxicol. Vitr. 2019, 60, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Sancho, J.; Maeso-Díaz, R.; Fernández-Iglesias, A.; Navarro-Zornoza, M.; Bosch, J. New cellular and molecular targets for the treatment of portal hypertension. Hepatol. Int. 2015, 9, 183–191. [Google Scholar] [CrossRef]
- Jimenez-Andrade, J.M.; Mantyh, W.G.; Bloom, A.P.; Freeman, K.T.; Ghilardi, J.R.; Kuskowski, M.A.; Mantyh, P.W. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain. Neurobiol. Aging. 2012, 33, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.U.; Radaelli, A.; Mori, T.; Mircoli, L.; Perlini, S.; Meregalli, P.; Fedele, L.; Mancia, G. Nitric oxide-dependent vasodilation and the regulation of arterial blood pressure. J. Cardiovasc. Pharmacol. 2001, 38, S19–S22. [Google Scholar] [CrossRef]
- Lee, S.H.; Ok, S.H.; Kang, D.; Kim, H.J.; Ahn, S.H.; Bae, S.I.; Kim, J.Y.; Kim, E.J.; Kim, S.; Hwag, Y.; et al. Nitric oxide-dependent vasodilation induced by minoxidil in isolated rat aorta. Gen. Physiol. Biophys. 2021, 40, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, M.; Nuri, M.; Sleasman, J.R.; Charette, K.A.; Nelson, B.R.; Portman, M.A. Inhaled nitric oxide reduces injury and microglia activation in porcine hippocampus after deep hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2021, 161, e485–e498. [Google Scholar] [CrossRef]
- Filpa, V.; Carpanese, E.; Marchet, S.; Pirrone, C.; Conti, A.; Rainero, A.; Moro, E.; Chiaravalli, A.M.; Zucchi, I.; Moriondo, A.; et al. Nitric oxide regulates homeoprotein OTX1 and OTX2 expression in the rat myenteric plexus after intestinal ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G374–G389. [Google Scholar] [CrossRef]
- Hocher, B.; Schwarz, A.; Slowinski, T.; Bachmann, S.; Pfeilschifter, J.; Neumayer, H.H.; Bauer, C. In-vitro interation of nitric oxide and endothelin. J. Hypertens. 2004, 22, 111–119. [Google Scholar] [CrossRef]
- Sharma, N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2017, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkrug, J. VIP and PACAP. Results Probl. Cell Differ. 2010, 50, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.L.; Fiscus, R.R. Vasorelaxations induced by calcitonin gene-related peptide, vasoactive intestinal peptide, and acetylcholine in aortic rings of endothelial and inducible nitric oxide synthase-knockout mice. J. Cardiovasc. Pharmacol. 2003, 41, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.U.; Koide, M.; Braas, K.M.; May, V.; Wellman, G.C. Pituitary adenylate cyclase-activating polypeptide (PACAP) potently dilates middle meningeal arteries: Implications for migraine. J. Mol. Neurosci. 2012, 48, 574–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabadfi, K.; Danyadi, B.; Kiss, P.; Tamas, A.; Fabian, E.; Gabriel, R.; Reglodi, D. Protective effects of vasoactive intestinal peptide (VIP) in ischemic retinal degeneration. J. Mol. Neurosci. 2012, 48, 501–507. [Google Scholar] [CrossRef]
- Gomariz, R.P.; Juarranz, Y.; Abad, C.; Arranz, A.; Leceta, J.; Martinez, C. VIP-PACAP system in immunity: New insights for multitarget therapy. Ann. N. Y. Acad. Sci. 2006, 1070, 51–74. [Google Scholar] [CrossRef]
- Long, J.B.; Rigamonti, D.D.; Dosaka, K.; Kraimer, J.M.; Martinez-Arizala, A. Somatostatin causes vasoconstriction, reduces blood flow and increases vascular permeability in the rat central nervous system. J. Pharmacol. Exp. Ther. 1992, 260, 1425–1432. [Google Scholar]
Antigen | Species of Origin | Code | Dilution | Supplier |
---|---|---|---|---|
PRIMARY ANTIBODIES | ||||
PGP 9.5 | Mouse | ab72911 | 1:1000 | Abcam |
GAL | Rabbit | AB2233 | 1:2000 | Milipore |
nNOS | Rabbit | AB5380 | 1:4000 | Chemicon |
VIP | Rabbit | VA 1285 | 1:4000 | Biogene |
PACAP | Rabbit | ab216627 | 1:4000 | Abcam |
CGRP | Rabbit | AB5920 | 1:4000 | AbDserotec |
CART | Rabbit | HPA046278 | 1:2000 | Merck |
SOM | Rabbit | ab111912 | 1:2000 | Abcam |
SECONDARY ANTIBODIES | ||||
Alexa Fluor 546 | Donkey Anti-Rabbit | A10040 | 1:1000 | Invitrogen |
Alexa Fluor 488 | Donkey Anti-Mouse | A21202 | 1:1000 | Invitrogen |
Control Group | |||||||
---|---|---|---|---|---|---|---|
Number of Animals | PGP 9.5+/ GAL+ | PGP 9.5+/ SOM+ | PGP 9.5+/ VIP+ | PGP 9.5+/ nNOS+ | PGP 9.5+/ PACAP+ | PGP 9.5+/ CGRP+ | PGP 9.5+/ CART+ |
1 | 35.03 | 25.18 | 45.08 | 39.05 | 47.96 | 64.99 | 46.17 |
2 | 37.38 | 27.56 | 52.82 | 36.73 | 30.08 | 54.58 | 40.07 |
3 | 38.56 | 23.08 | 52.17 | 32.17 | 32.95 | 54.44 | 42.96 |
4 | 27.82 | 28.32 | 52.48 | 27.19 | 39.44 | 60.76 | 38.75 |
5 | 29.99 | 24.68 | 41.38 | 28.24 | 38.05 | 58.51 | 38.54 |
Minimum | 27.82 | 23.08 | 41.38 | 27.19 | 30.08 | 54.44 | 38.54 |
Maximum | 38.56 | 28.32 | 52.82 | 39.05 | 47.96 | 64.99 | 46.17 |
Mean | 33.76 | 25.76 | 48.79 | 32.68 | 37.70 | 58.66 | 41.30 |
SEM | 2.09 | 0.96 | 2.34 | 2.31 | 3.07 | 1.99 | 1.45 |
E1 Group | |||||||
---|---|---|---|---|---|---|---|
Number of Animals | PGP 9.5+/ GAL+ | PGP 9.5+/ SOM+ | PGP 9.5+/ VIP+ | PGP 9.5+/ nNOS+ | PGP 9.5+/ PACAP+ | PGP 9.5+/ CGRP+ | PGP 9.5+/ CART+ |
1 | 36.99 | 24.25 | 52.97 | 44.73 | 43.48 | 75.27 | 47.81 |
2 | 29.92 | 19.87 | 52.98 | 42.93 | 38.09 | 69.94 | 59.52 |
3 | 41.63 | 21.67 | 60.63 | 29.24 | 51.25 | 67.94 | 51.00 |
4 | 38.38 | 28.50 | 47.41 | 39.22 | 43.17 | 60.02 | 48.59 |
5 | 33.59 | 29.66 | 55.31 | 48.85 | 56.99 | 67.14 | 56.34 |
Minimum | 29.92 | 19.87 | 47.41 | 29.24 | 38.09 | 60.02 | 47.81 |
Maximum | 41.63 | 29.66 | 60.63 | 48.85 | 56.99 | 75.27 | 59.52 |
Mean | 36.10 | 24.79 | 53.86 | 40.99 | 46.60 | 68.07 | 52.65 |
SEM | 2.01 | 1.89 | 2.13 | 3.32 | 3.34 | 2.46 | 2.27 |
E2 Group | |||||||
---|---|---|---|---|---|---|---|
Number of Animals | PGP 9.5+/ GAL+ | PGP 9.5+/ SOM+ | PGP 9.5+/ VIP+ | PGP 9.5+/ nNOS+ | PGP 9.5+/ PACAP+ | PGP 9.5+/ CGRP+ | PGP 9.5+/ CART+ |
1 | 39.78 | 26.50 | 64.95 | 65.03 | 43.30 | 77.31 | 54.13 |
2 | 29.91 | 22.32 | 77.93 | 58.97 | 56.51 | 78.47 | 62.39 |
3 | 37.98 | 16.17 | 59.53 | 67.24 | 50.76 | 78.99 | 57.48 |
4 | 36.22 | 23.84 | 67.94 | 51.87 | 46.17 | 70.62 | 46.71 |
5 | 38.02 | 21.04 | 67.46 | 54.01 | 48.10 | 70.80 | 53.58 |
Minimum | 29.91 | 16.17 | 59.53 | 51.87 | 43.30 | 70.62 | 46.71 |
Maximum | 39.78 | 26.50 | 77.93 | 67.24 | 56.51 | 78.99 | 62.39 |
Mean | 36.38 | 21.97 | 67.66 | 59.42 | 48.97 | 75.24 | 54.86 |
SEM | 1.71 | 1.71 | 2.99 | 2.99 | 2.25 | 1.87 | 2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rytel, L.; Könyves, L.; Gonkowski, S. Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig. Int. J. Environ. Res. Public Health 2022, 19, 5964. https://doi.org/10.3390/ijerph19105964
Rytel L, Könyves L, Gonkowski S. Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig. International Journal of Environmental Research and Public Health. 2022; 19(10):5964. https://doi.org/10.3390/ijerph19105964
Chicago/Turabian StyleRytel, Liliana, László Könyves, and Slawomir Gonkowski. 2022. "Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig" International Journal of Environmental Research and Public Health 19, no. 10: 5964. https://doi.org/10.3390/ijerph19105964
APA StyleRytel, L., Könyves, L., & Gonkowski, S. (2022). Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig. International Journal of Environmental Research and Public Health, 19(10), 5964. https://doi.org/10.3390/ijerph19105964