Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wadi El-Aawag Watershed (Case Study Area)
2.2. Meteorological Data and Hydrological Frequency Analysis
2.3. Watershed Modeling
3. Results and Discussion
3.1. Impact of the Recurrence Intervals on Rainfall Intensity
3.2. Estimation of a Watershed Hydrograph
3.2.1. The Peak Discharge Value
3.2.2. The Flood Volume Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-artassessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaty, I.; Straface, S.; Kuriqi, A. Sustainable Saltwater Intrusion Management in Coastal Aquifers under Climatic Changes for Humid and Hyper-Arid Regions. Ecol. Eng. 2021, 171, 106382. [Google Scholar] [CrossRef]
- El-Fakharany, M.A.; Mansour, N.M. Morphometric analysis and FF hazards assessment for Wadi Al Aawag drainage Basins, southwest Sinai, Egypt. Environ. Earth Sci. 2021, 80, 168. [Google Scholar] [CrossRef]
- EL-Nefary, I.F. Storm Water Hydrological Modeling for Arid and Semi-Arid Regions (Case Study: Wadi Sudr—Sinai). Ph.D. Thesis, Faculty of Engineering, Zagazig University, Hong Kong, China, 2014. [Google Scholar]
- El Afandi, G.; Morsy, M.; El Hussieny, F. Heavy Rainfall Simulation over Sinai Peninsula Using the Weather Research and Forecasting Model. Int. J. Atmos. Sci. 2013, 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Soil Conservation Service (SCS). Snow Survey and Water Supply Forecasting, National Engineering Handbook; Section 22; Soil Conservation Service: Washington, DC, USA, 1972.
- Smemoe, C.M.; Nelson, E.J.; Zhao, B. Spatial averaging of land use and soil properties to develop the physically-based Green and Ampt parameters for HEC-1. Environ. Model. Softw. 2004, 19, 525–535. [Google Scholar] [CrossRef]
- Chahinian, N.; Moussa, R.; Andrieux, P.; Voltz, M. Comparison of infiltration models to simulate flood events at the field scale. J. Hydrol. 2005, 306, 191–214. [Google Scholar] [CrossRef]
- Jena, S.; Tiwari, K. Modeling synthetic unit hydrograph parameters with geomorphologic parameters of watersheds. J. Hydrol. 2006, 319, 1–14. [Google Scholar] [CrossRef]
- Garambois, P.-A.; Larnier, K.; Roux, H.; Labat, D.; Dartus, D. Analysis of flash flood-triggering rainfall for a process-oriented hydrological model. Atmos. Res. 2014, 137, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Japan International Cooperation Agency (JICA). South Sinai Groundwater Resources Study in the Arab Republic of Egypt, Main Report Submitted to the Water Resources Research Institute, Ministry of Public Works and Water Resources, Cairo, Egypt; JICA: Tokyo, Japan, 1999.
- Youssef, A.M.; Pradhan, B.; Hassan, A.M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623. [Google Scholar] [CrossRef]
- Nahla, A.M. Assessment of the rainfall storm events of events of January 2010 and March 2014 for the catchment modeling of Wadi El Arish and Wadi Wardan basins, Sinai Egypt. Egypt. J. Desert Res. 2016, 66, 137–168. [Google Scholar] [CrossRef] [Green Version]
- Maria, P.; Adel, O.; Dietrich, S.; Abdou, A. Vulnerability assessment of FF in Wadi Dahab Basin, Egypt. Environ. Earth Sci. 2020, 79, 114. [Google Scholar] [CrossRef] [Green Version]
- Alrikabi, A.; Elmewafey, M.; Beshr, A.; Elnaggar, A.A. Using GIS based morphometry estimation of flood hazard impacts on desert roads in South Sinai, Egypt. Int. J. Sci. Eng. Res. 2015, 6, 1593–1599. [Google Scholar]
- Awadallah, A.G.; Younan, N.S. Conservative design rainfall distribution for application in arid regions with sparse data. J. Arid. Environ. 2012, 79, 66–75. [Google Scholar] [CrossRef]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M. An early warning system for FF in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- Wahid, A.; Marguerite, M.; Fikry, K.; Ibtehal, F. Geospatial analysis for the determination of hydro-morphological characteristics and assessment of flash flood potentiality in arid coastal plains: A case in Southwestern Sinai, Egypt. Earth Sci. Res. J. 2016, 20, E1–E9. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Christensen, J.H.; Kumar, K.K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Dadamouny, M.A.; Schnittler, M. Trends of climate with rapid change in Sinai, Egypt. J. Water Clim. Chang. 2015, 7, 393–414. [Google Scholar] [CrossRef]
- Morsy, M.; Scholten, T.; Michaelides, S.; Borg, E.; Sherief, Y.; Dietrich, P. Comparative Analysis of TMPA and IMERG Precipitation Datasets in the Arid Environment of El-Qaa Plain, Sinai. Remote Sens. 2021, 13, 588. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Wheida, A.; Nazer, M.E.; Adel, M.; Leithy, L.E.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.W.; Omar, M.; et al. Past (1950–2017) and future (−2100) temperature and precipitation trends in Egypt. Weather. Clim. Extrem. 2019, 26, 100225. [Google Scholar] [CrossRef]
- Sayed, M.A.A.; El-Fakharany, M.A.; Hamed, M.F. Integrated geophysical and hydrogeological studies on the Quaternary aquifer at the middle part of El Qaa plain, SW Sinai, Egypt. Egypt. Geophys. Soc. J. 2004, 2, 135–145. [Google Scholar]
- EL-Refai, A.A. Water Resources of Southern Sinai, Egypt. Geomorphological and Hydrogeological Studies. Ph.D. Thesis, Faculty of Science, University of Cairo, Giza, Egypt, 1992; p. 357. [Google Scholar]
- El-Fakharany, M.A. Geophysical and hydrogeochemical investigations of the Quaternary aquifer at the middle part of El Qaa Plain SW Sinai, Egypt. Egypt. J. Geol. 2016, 47, 1003–1022. [Google Scholar]
- Hammad, F.A. Geomorphological and Hydrogeological Aspects of Sinai Peninsula, A.R.E. 1980. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM8320208437 (accessed on 11 April 2022).
- UNSECO Cairo Office. Geologic Map of Sinai, Egypt, Scale 1:500,000, Project for the Capacity Building of the Egyptian Geological Survey and Mining Authority and the National Authority Forremote Sensing and Space Science in Cooperation with UNDP and UNESCO, Geological Survey of Egypt; UNESCO: Paris, France, 2004. [Google Scholar]
- Howard, W.; Soroosh, S.; Sharma, K.D. Hydrological Modelling in Arid and Semi-Arid Areas; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- US Army Corps of Engineers (USACE). Hydrologic Modeling System HEC-HMS Technical Reference Manual; Hydrologic Engineering Center: Davis, CA, USA, 2000. [Google Scholar]
- Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-hashim, M. Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaty, I.; Pugliese, L.; Zelenakova, M.; Mesaros, P.; Shinawi, A.E. Simulation-Based Solutions Reducing Soil and Groundwater Contamination from Fertilizers in Arid and Semi-Arid Regions: Case Study the Eastern Nile Delta, Egypt, 2020. Int. J. Environ. Res. Public Health 2020, 17, 9373. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.S.; Kesavan, P.C. Agricultural research in an era of climate change. Agric. Res. 2012, 1, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Shahawy, A.E.L.; Santoro, S.; Curcio, E.; Straface, S. Effects of groundwater abstraction and desalination brine deep injection on a coastal aquifer. Sci. Total Environ. 2021, 795, 148928. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Kushwaha, N.L.; Mark, E.G.; Elbeltagi, A.; Kuriq, A. Cost-effective management measures for coastal aquifers affected by saltwater intrusion and climate change. Sci. Total Environ. 2022, 836, 155656. [Google Scholar] [CrossRef]
- Bana, R.S.; Rana, K.S.; Choudhary, A.K.; Pooniya, V. Agricultural drought and its mitigation strategies. IFFCO Found. Bull. 2014, 2, 12–26. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl (accessed on 2 September 2020).
- Zeleňáková, M.; Jothiprakash, V.; Arjun, S.; Káposztásová, D.; Hlavatá, H. Dynamic Analysis of Meteorological Parameters in Košice Climatic Station in Slovakia. Water 2018, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Nagy, P.; Zeleňáková, M.; Hlavatá, H.; Abd-Elhamid, H.F. Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water 2021, 13, 1413. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)-Managing Systems at Risk; FAO: Rome, Italy, 2011. [Google Scholar]
- Modrick, M.T.; Georgakakos, K.P. The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. J. Hydrol. Reg. Stud. 2015, 3, 312–336. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Matano, F.; Scepi, G. Analysis of Increasing Flash Flood Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic Area, Italy. Front. Earth Sci. 2018, 6, 63. [Google Scholar] [CrossRef]
- Ragettli, S.; Tong, X.; Zhang, G.; Wang, H.; Zhang, P.; Stähli, M. Climate change impacts on summer flood frequencies in two mountainous catchments in China and Switzerland. Hydrol. Res. 2021, 52, 4–25. [Google Scholar] [CrossRef] [Green Version]
Year | Tmin | Tmax | Taver | V | PT | RA | Pmax | Paver |
---|---|---|---|---|---|---|---|---|
1995 | 22.9 | 27.7 | 18.1 | 24.8 | 0 | 1 | 0 | 0 |
1996 | 23.2 | 28.2 | 18.5 | 24.5 | 13.46 | 2 | 12.95 | 6.73 |
1997 | 22.9 | 28 | 17.9 | 22.4 | 1.02 | 2 | 1.02 | 0.51 |
1998 | 23.7 | 28.4 | 19.1 | 23 | 3.05 | 1 | 2.03 | 3.05 |
2000 | 22 | 27.2 | 17 | 24.1 | 11.44 | 5 | 5.08 | 2.288 |
2001 | 23.3 | 28.2 | 18.1 | 25.7 | 11.94 | 1 | 11.94 | 11.94 |
2003 | 23.3 | 28.2 | 18.3 | 24.8 | 3.05 | 1 | 2.03 | 3.05 |
2004 | 22.9 | 27.7 | 18.2 | 25 | 0 | 1 | 0 | 0 |
2006 | 23.4 | 28.2 | 18.6 | 24.4 | 0.76 | 1 | 0.76 | 0.76 |
2007 | 23.6 | 28.6 | 18.8 | 23.6 | 0 | 1 | 0 | 0 |
2008 | 23.7 | 28.7 | 18.8 | 23.5 | 2.54 | 1 | 2.03 | 2.54 |
2009 | 23.7 | 28.9 | 18.6 | 22.6 | 0 | 1 | 0 | 0 |
2010 | 24.9 | 30 | 20 | 22.3 | 23.37 | 2 | 13.97 | 11.685 |
2011 | 23.5 | 28.1 | 18.7 | 24.1 | 2.03 | 2 | 2.03 | 1.015 |
2015 | 23.9 | 28.9 | 19 | 26.2 | 77.72 | 2 | 70.1 | 38.86 |
2017 | 23.5 | 28.5 | 18.6 | 19.5 | 70.61 | 2 | 70.1 | 35.305 |
2019 | 23.8 | 28.9 | 19 | 22.3 | 3.3 | 3 | 2.03 | 1.1 |
2021 | 24.3 | 28.9 | 19.4 | 26.2 | 273.31 | 4 | 199.9 | 68.3275 |
Recurrence Intervals (Y) | Average Annual | 2 | 5 | 10 | 25 | 50 | 100 |
---|---|---|---|---|---|---|---|
Depth (mm) | 13.37 | 15.3 | 35.30 | 50.60 | 70.70 | 85.90 | 101 |
Time (min) | Flow (m3 s−1) | ||||||
0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
180 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
360 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
540 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
720 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | 1.39 | 2.71 |
900 | 0.00 | 0.00 | 0.00 | 1.39 | 17.05 | 39.42 | 68.99 |
1080 | 0.00 | 0.00 | 0.00 | 7.84 | 66.92 | 145.47 | 246.98 |
1260 | 0.00 | 0.00 | 0.00 | 21.07 | 136.34 | 278.63 | 457.76 |
1440 | 0.00 | 0.00 | 0.03 | 35.11 | 183.02 | 354.73 | 565.87 |
1620 | 0.00 | 0.00 | 0.15 | 44.14 | 195.25 | 361.82 | 562.28 |
1800 | 0.00 | 0.00 | 0.34 | 44.85 | 173.38 | 307.78 | 465.77 |
1980 | 0.00 | 0.00 | 0.44 | 37.35 | 134.35 | 233.32 | 348.32 |
2160 | 0.00 | 0.00 | 0.40 | 27.17 | 95.09 | 163.81 | 243.31 |
2340 | 0.00 | 0.00 | 0.30 | 17.98 | 62.41 | 107.21 | 158.96 |
2520 | 0.00 | 0.00 | 0.18 | 11.35 | 39.50 | 67.90 | 100.71 |
2700 | 0.00 | 0.00 | 0.12 | 7.28 | 25.30 | 43.47 | 64.45 |
2880 | 0.00 | 0.00 | 0.08 | 4.67 | 16.22 | 27.88 | 41.36 |
3060 | 0.00 | 0.00 | 0.05 | 2.98 | 10.37 | 17.83 | 26.44 |
3240 | 0.00 | 0.00 | 0.03 | 1.90 | 6.63 | 11.39 | 16.89 |
3420 | 0.00 | 0.00 | 0.02 | 1.22 | 4.29 | 7.40 | 11.01 |
3600 | 0.00 | 0.00 | 0.01 | 0.80 | 2.80 | 4.83 | 7.18 |
3780 | 0.00 | 0.00 | 0.01 | 0.51 | 1.75 | 2.97 | 4.38 |
3960 | 0.00 | 0.00 | 0.01 | 0.31 | 0.94 | 1.52 | 2.15 |
4140 | 0.00 | 0.00 | 0.00 | 0.16 | 0.46 | 0.72 | 1.00 |
4320 | 0.00 | 0.00 | 0.00 | 0.07 | 0.19 | 0.30 | 0.41 |
4500 | 0.00 | 0.00 | 0.00 | 0.02 | 0.05 | 0.08 | 0.11 |
4680 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
4860 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5040 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5220 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5400 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elaty, I.; Shoshah, H.; Zeleňáková, M.; Kushwaha, N.L.; El-Dean, O.W. Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai. Int. J. Environ. Res. Public Health 2022, 19, 6049. https://doi.org/10.3390/ijerph19106049
Abd-Elaty I, Shoshah H, Zeleňáková M, Kushwaha NL, El-Dean OW. Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai. International Journal of Environmental Research and Public Health. 2022; 19(10):6049. https://doi.org/10.3390/ijerph19106049
Chicago/Turabian StyleAbd-Elaty, Ismail, Hanan Shoshah, Martina Zeleňáková, Nand Lal Kushwaha, and Osama W. El-Dean. 2022. "Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai" International Journal of Environmental Research and Public Health 19, no. 10: 6049. https://doi.org/10.3390/ijerph19106049
APA StyleAbd-Elaty, I., Shoshah, H., Zeleňáková, M., Kushwaha, N. L., & El-Dean, O. W. (2022). Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai. International Journal of Environmental Research and Public Health, 19(10), 6049. https://doi.org/10.3390/ijerph19106049