Effect of Diet and Exercise-Induced Weight Loss among Metabolically Healthy and Metabolically Unhealthy Obese Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Database
2.2. Diet and Exercise Protocol
2.3. Data Collection
2.4. Definition of MHO and MUO
2.5. Statistical Analyses
3. Results
3.1. Basic Characteristics of the Two Groups
3.2. Distribution of Indicators Related to Metabolically Healthy Status of the Two Groups before and after Intervention
3.3. Changes of Anthropometry and Blood Indicators in MHO and MUO Groups before and after Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vukovic, R.; Dos Santos, T.J.; Ybarra, M.; Atar, M. Children with Metabolically Healthy Obesity: A Review. Front. Endocrinol. 2019, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Pacifico, L.; Xi, B.; Cadenas-Sanchez, C. Editorial: Metabolically Healthy and Unhealthy Obese Children and Adolescents. Front. Endocrinol. 2020, 11, 613703. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Hargreaves, D.; Mates, E.; Menon, P.; Alderman, H.; Devakumar, D.; Fawzi, W.; Greenfield, G.; Hammoudeh, W.; He, S.; Lahiri, A.; et al. Strategies and interventions for healthy adolescent growth, nutrition, and development. Lancet 2022, 399, 198–210. [Google Scholar] [CrossRef]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Sumithran, P.; Prendergast, L.A.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011, 365, 1597–1604. [Google Scholar] [CrossRef] [Green Version]
- MacLean, P.S.; Higgins, J.A.; Giles, E.D.; Sherk, V.D.; Jackman, M.R. The role for adipose tissue in weight regain after weight loss. Obes. Rev. 2015, 16 (Suppl. 1), 45–54. [Google Scholar] [CrossRef] [Green Version]
- Varkevisser, R.D.M.; van Stralen, M.M.; Kroeze, W.; Ket, J.C.F.; Steenhuis, I.H.M. Determinants of weight loss maintenance: A systematic review. Obes. Rev. 2019, 20, 171–211. [Google Scholar] [CrossRef] [Green Version]
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef]
- Genovesi, S.; Antolini, L.; Orlando, A.; Gilardini, L.; Bertoli, S.; Giussani, M.; Invitti, C.; Nava, E.; Battaglino, M.G.; Leone, A.; et al. Cardiovascular Risk Factors Associated with the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Front. Endocrinol. 2020, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.J.; Hyun, Y.J.; Kim, O.Y.; Kim, J.Y.; Jang, Y.; Lee, J.H. Weight loss effect on inflammation and LDL oxidation in metabolically healthy but obese (MHO) individuals: Low inflammation and LDL oxidation in MHO women. Int. J. Obes. 2006, 30, 1529–1534. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, B.J.; Cote, M.; Cartier, A.; Lemieux, I.; Despres, J.P.; Ross, R.; Earnest, C.P.; Blair, S.N.; Church, T.S. Effect of exercise training on cardiometabolic risk markers among sedentary, but metabolically healthy overweight or obese post-menopausal women with elevated blood pressure. Atherosclerosis 2009, 207, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Janiszewski, P.M.; Ross, R. Effects of weight loss among metabolically healthy obese men and women. Diabetes Care 2010, 33, 1957–1959. [Google Scholar] [CrossRef] [Green Version]
- Kantartzis, K.; Machann, J.; Schick, F.; Rittig, K.; Machicao, F.; Fritsche, A.; Haring, H.U.; Stefan, N. Effects of a lifestyle intervention in metabolically benign and malign obesity. Diabetologia 2011, 54, 864–868. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H.; Wharton, S.; Sharma, A.M.; Ardern, C.I.; Kuk, J.L. Influence of a clinical lifestyle-based weight loss program on the metabolic risk profile of metabolically normal and abnormal obese adults. Obesity 2013, 21, 1533–1539. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Ortega, F.B.; Labayen, I. A weight loss diet intervention has a similar beneficial effect on both metabolically abnormal obese and metabolically healthy but obese premenopausal women. Ann. Nutr. Metab. 2013, 62, 223–230. [Google Scholar] [CrossRef]
- Palau-Rodriguez, M.; Garcia-Aloy, M.; Minarro, A.; Bernal-Lopez, M.R.; Brunius, C.; Gomez-Huelgas, R.; Landberg, R.; Tinahones, F.J.; Andres-Lacueva, C. Effects of a long-term lifestyle intervention on metabolically healthy women with obesity: Metabolite profiles according to weight loss response. Clin. Nutr. 2020, 39, 215–224. [Google Scholar] [CrossRef]
- Damanhoury, S.; Newton, A.S.; Rashid, M.; Hartling, L.; Byrne, J.L.S.; Ball, G.D.C. Defining metabolically healthy obesity in children: A scoping review. Obes. Rev. 2018, 19, 1476–1491. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wojcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Cavrak, V.; Lopez-Valcarcel, B.G.; Brzezinski, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Wang, R.; Chen, P.J.; Chen, W.H. Diet and exercise improve neutrophil to lymphocyte ratio in overweight adolescents. Int. J. Sports Med. 2011, 32, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, A.; Chen, W.; Helm, K. Effects of visfatin gene polymorphism RS4730153 on exercise-induced weight loss of obese children and adolescents of Han Chinese. Int. J. Biol. Sci. 2013, 9, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Huang, G.; Tian, Q.; Liu, W.; Sun, X.; Li, N.; Sun, S.; Zhou, T.; Wu, N.; Wei, Y.; et al. “Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity: A pilot study. Medicine 2018, 97, e9943. [Google Scholar] [CrossRef]
- TANITA-China. MC-980MA Body Composition Analyzer Instruction Manual. Available online: http://www.tanita.com.cn/service/dl (accessed on 7 May 2022).
- National Health Commission. Screening for Overweight and Obesity among School-Age Children and Adolescents; National Health Commission: Beijing, China, 2018.
- National Health Commission. Reference of Screening for Elevated Blood Pressure among Children and Adolescents Aged 7~18 Years; National Health Commission: Beijing, China, 2018.
- Reinehr, T.; Wolters, B.; Knop, C.; Lass, N.; Holl, R.W. Strong effect of pubertal status on metabolic health in obese children: A longitudinal study. J. Clin. Endocrinol. Metab. 2015, 100, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Bluher, S.; Schwarz, P. Metabolically healthy obesity from childhood to adulthood—Does weight status alone matter? Metabolism 2014, 63, 1084–1092. [Google Scholar] [CrossRef]
- Senechal, M.; Wicklow, B.; Wittmeier, K.; Hay, J.; MacIntosh, A.C.; Eskicioglu, P.; Venugopal, N.; McGavock, J.M. Cardiorespiratory fitness and adiposity in metabolically healthy overweight and obese youth. Pediatrics 2013, 132, e85–e92. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, J.; Yan, Y.; Mi, J.; China, C.; Adolescent Cardiovascular Health Study, G. Abnormal Metabolic Phenotypes Among Urban Chinese Children: Epidemiology and the Impact of DXA-Measured Body Composition. Obesity 2019, 27, 837–844. [Google Scholar] [CrossRef]
- Wirix, A.J.; Kaspers, P.J.; Nauta, J.; Chinapaw, M.J.; Kist-van Holthe, J.E. Pathophysiology of hypertension in obese children: A systematic review. Obes. Rev. 2015, 16, 831–842. [Google Scholar] [CrossRef]
- Nguyen, T.; Lau, D.C. The obesity epidemic and its impact on hypertension. Can. J. Cardiol. 2012, 28, 326–333. [Google Scholar] [CrossRef]
- Bondyra-Wisniewska, B.; Myszkowska-Ryciak, J.; Harton, A. Impact of Lifestyle Intervention Programs for Children and Adolescents with Overweight or Obesity on Body Weight and Selected Cardiometabolic Factors-A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 2061. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, N.; Stojanovic, E.; Stojiljkovic, N.; Nikolic, D.; Scanlan, A.T.; Milanovic, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28 (Suppl. 1), 18–32. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Garnett, S.P.; Baur, L.; Burrows, T.; Stewart, L.; Neve, M.; Collins, C. Effectiveness of lifestyle interventions in child obesity: Systematic review with meta-analysis. Pediatrics 2012, 130, e1647–e1671. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, E.A.; Evans, C.V.; Burda, B.U.; Walsh, E.S.; Eder, M.; Lozano, P. Screening for Obesity and Intervention for Weight Management in Children and Adolescents: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 317, 2427–2444. [Google Scholar] [CrossRef]
- Santos, H.O.; Lavie, C.J. Weight loss and its influence on high-density lipoprotein cholesterol (HDL-C) concentrations: A noble clinical hesitation. Clin. Nutr. ESPEN 2021, 42, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.T.; Marsche, G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int. J. Mol. Sci. 2020, 21, 8985. [Google Scholar] [CrossRef] [PubMed]
- Aicher, B.O.; Haser, E.K.; Freeman, L.A.; Carnie, A.V.; Stonik, J.A.; Wang, X.; Remaley, A.T.; Kato, G.J.; Cannon, R.O., 3rd. Diet-induced weight loss in overweight or obese women and changes in high-density lipoprotein levels and function. Obesity 2012, 20, 2057–2062. [Google Scholar] [CrossRef]
- Medina-Remon, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martinez-Gonzalez, M.A.; Fito, M.; Corella, D.; Salas-Salvado, J.; Lamuela-Raventos, R.M.; Estruch, R.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017, 83, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.; Garnett, S.P.; Baur, L.A.; Burrows, T.; Stewart, L.; Neve, M.; Collins, C. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: A systematic review and meta-analysis of randomized trials. JAMA Pediatr. 2013, 167, 759–768. [Google Scholar] [CrossRef]
- Williams, P.T.; Stefanick, M.L.; Vranizan, K.M.; Wood, P.D. The effects of weight loss by exercise or by dieting on plasma high-density lipoprotein (HDL) levels in men with low, intermediate, and normal-to-high HDL at baseline. Metabolism 1994, 43, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | MHO | MUO | Total | p Value |
---|---|---|---|---|
N (%) | 102 (36.2%) | 180 (63.8%) | 282 (100%) | / |
Age (y) | 12.4 ± 2.3 | 13.2 ± 2.2 | 12.9 ± 2.3 | 0.010 |
Sex (M/F) | 49/53 | 102/78 | 151/131 | 0.163 |
Height (cm) | 159.7 ± 11.5 | 163.9 ± 10.4 | 162.4 ± 11.0 | 0.002 |
BW (kg) | 75.2 ± 18.1 | 85.3 ± 19.3 | 81.7 ± 19.4 | <0.001 |
BMI (kg/m2) | 29.0 ± 3.8 | 31.4 ± 4.6 | 30.5 ± 4.5 | <0.001 |
WC (cm) | 93.8 ± 11.1 | 99.4 ± 11.1 | 97.4 ± 11.4 | <0.001 |
Variable | MHO Group (n = 102) | MUO Group (n = 180) | ||
---|---|---|---|---|
Before (%) | After (%) | Before (%) | After (%) | |
MUO status | 0 (0.0%) | 36 (35.3%) | 180 (100%) | 112 (62.2%) |
BMI > 95th percentile 1 | 102 (100%) | 94 (92.2%) | 180 (100%) | 164 (91.1%) |
HDL-C ≤ 1.03 mmol/L | 0 (0.0%) | 29 (28.4%) | 76 (42.2%) | 102 (56.7%) |
TG > 1.7 mmol/L | 0 (0.0%) | 0 (0.0%) | 22 (12.2%) | 2 (1.1%) |
SBP > 90th percentile 1 | 0 (0.0%) | 7 (6.9%) | 117 (65.0%) | 36 (20.0%) |
DBP > 90th percentile 1 | 0 (0.0%) | 6 (5.9%) | 88 (48.9%) | 32 (17.8%) |
FBG > 5.6 mmol/L | 0 (0.0%) | 1 (1.0%) | 3 (1.7%) | 0 (0.0%) |
Variable | MHO | MUO | p Value | ||||
---|---|---|---|---|---|---|---|
Before | After | Change% (95% CI) | Before | After | Change% (95% CI) | ||
BW (kg) | 75.2 ± 18.1 | 68.3 ± 16.5 †,** | −9.2 (−9.5, −8.9) | 85.3 ± 19.3 | 77.3 ± 17.6 §,** | −9.5 (−9.8, −9.2) | 0.317 |
BMI (kg/m2) | 29.0 ± 3.8 | 26.3 ± 3.5 †,** | −9.3 (−9.6, −9.0) | 31.4 ± 4.6 | 28.4 ± 4.3 §,** | −9.7 (−10.0, −9.4) | 0.077 |
BFR (%) | 40.0 ± 4.7 | 35.6 ± 5.6 †,** | −11.1 (−12.7, −9.6) | 40.2 ± 5.5 | 35.5 ± 6.5 §,** | −11.9 (−13.1, −10.7) | 0.292 |
WC (cm) | 93.8 ± 11.1 | 84.4 ± 10.4 †,** | −9.9 (−11.0, −8.9) | 99.4 ± 11.1 | 89.8 ± 10.6 §,** | −9.56 (−10.3, −8.8) | 0.357 |
SBP (mmHg) | 107.5 ± 7.9 | 103.0 ± 9.5 †,** | −3.9 (−5.8, −1.9) | 124.8 ± 14.9 | 111.3 ± 13.5 §,** | −10.2 (−11.8, 8.6) | <0.001 |
DBP (mmHg) | 64.7 ± 6.4 | 62.3 ± 9.4 †,** | −2.9 (−6.2, 0.4) | 77.6 ± 14.8 | 65.7 ± 11.8 §,** | −13.5 (−16.1, −10.8) | <0.001 |
RHR (beats/min) | 88.9 ± 10.6 | 81.1 ± 11.9 †,** | −8.3 (−10.7, −6.0) | 93.1 ± 13.7 | 81.6 ± 13.1 §,** | −11.1 (−13.6, −8.7) | 0.025 |
FBG (mmol/L) | 4.6 ± 0.4 | 4.5 ± 0.4 | −0.5 (−2.4, 1.4) | 4.6 ± 0.4 | 4.4 ± 0.4 §,** | −3.2 (−4.6, −1.8) | 0.011 |
TG (mmol/L) | 0.8 ± 0.2 | 0.7 ± 0.2 †,** | −8.1 (−12.3, −3.9) | 1.1 ± 0.6 | 0.8 ± 0.3 §,** | −18.4 (−22.4, −14.5) | <0.001 |
TC (mmol/L) | 4.4 ± 0.7 | 3.5 ± 0.6 †,** | −19.4 (−21.5, −17.3) | 4.5 ± 1.0 | 3.5 ± 0.6 §,** | −20.0 (−21.6, −18.4) | 0.670 |
HDL-C (mmol/L) | 1.3 ± 0.2 | 1.2 ± 0.2 †,** | −8.6 (−10.8, −6.3) | 1.1 ± 0.3 | 1.1 ± 0.2 §,** | −6.2 (−8.0, −4.4) | 0.121 |
LDL-C (mmol/L) | 2.6 ± 0.6 | 0.4 ± 0.6 †,** | −26.1 (−28.7, −23.6) | 2.9 ± 0.7 | 1.0 ± 0.8 §,** | −26.7 (−28.5, −24.8) | 0.730 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Wang, K.; Tian, Q.; Zhang, J.; Qi, L.; Chen, T. Effect of Diet and Exercise-Induced Weight Loss among Metabolically Healthy and Metabolically Unhealthy Obese Children and Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 6120. https://doi.org/10.3390/ijerph19106120
Yang Q, Wang K, Tian Q, Zhang J, Qi L, Chen T. Effect of Diet and Exercise-Induced Weight Loss among Metabolically Healthy and Metabolically Unhealthy Obese Children and Adolescents. International Journal of Environmental Research and Public Health. 2022; 19(10):6120. https://doi.org/10.3390/ijerph19106120
Chicago/Turabian StyleYang, Qin, Kun Wang, Qianqian Tian, Jian Zhang, Linyu Qi, and Tao Chen. 2022. "Effect of Diet and Exercise-Induced Weight Loss among Metabolically Healthy and Metabolically Unhealthy Obese Children and Adolescents" International Journal of Environmental Research and Public Health 19, no. 10: 6120. https://doi.org/10.3390/ijerph19106120
APA StyleYang, Q., Wang, K., Tian, Q., Zhang, J., Qi, L., & Chen, T. (2022). Effect of Diet and Exercise-Induced Weight Loss among Metabolically Healthy and Metabolically Unhealthy Obese Children and Adolescents. International Journal of Environmental Research and Public Health, 19(10), 6120. https://doi.org/10.3390/ijerph19106120