Association of Social-Cognitive Factors with Individual Preventive Behaviors of COVID-19 among a Mixed-Sample of Older Adults from China and Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Procedure
2.2. Measurement
2.2.1. Demographic Information
2.2.2. Preventive Behaviors
2.2.3. Motivational Factors of Preventive Behaviors
2.2.4. Volitional Factors of Preventive Behaviors
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Descriptive Information of Study Variables
3.3. Association of Motivational Factors, Volitional Factors with Three Preventive Behaviors
3.4. Country Moderating the Associations of Social-Cognitive Factors with Three Preventive Behaviors
3.4.1. Hand Washing Behavior
3.4.2. Facemask Wearing Behavior
3.4.3. Physical Distancing Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Center for Systems Science and Engineering (CSSE). Johns Hopkins University, USA. Available online: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 23 April 2021).
- Kluge, H.H.P. Statement—Older People Are at Highest Risk from COVID-19, but All Must Act to Prevent Community Spread; WHO: Copenhagen, Denmark, 2020; Available online: http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/statements/statement-older-people-are-at-highest-risk-from-covid-19,-but-all-must-act-to-prevent-community-spread (accessed on 2 April 2020).
- Shahid, Z.; Kalayanamitra, R.; McClafferty, B.; Kepko, D.; Ramgobin, D.; Patel, R.; Aggarwal, C.S.; Vunnam, R.; Sahu, N.; Bhatt, D.; et al. COVID-19 and older adults: What we know. J. Am. Geriatr. Soc. 2020, 68, 926–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: http://wwwwhoint/emergencies/diseases/novel-coronavirus-2019 (accessed on 2 April 2021).
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Broomell, S.B.; Chapman, G.B.; Downs, J.S. Psychological Predictors of Prevention Behaviors during the COVID-19 Pandemic. Behav. Sci. Policy 2020, 6, 1–8. Available online: https://behavioralpolicy.org/journal_issue/covid-19/ (accessed on 2 April 2021). [CrossRef]
- Doung-Ngern, P.; Suphanchaimat, R.; Panjangampatthana, A.; Janekrongtham, C.; Ruampoom, D.; Daochaeng, N.; Eungkanit, N.; Pisitpayat, N.; Srisong, N.; Yasopa, O.; et al. Associations between wearing masks, washing hands, and social distancing practices, and risk of COVID-19 infection in public: A cohort-based case-control study in Thailand. medRxiv 2020. [Google Scholar] [CrossRef]
- Liang, W.; Duan, Y.; Shang, B.; Hu, C.; Baker, J.S.; Lin, Z.; He, J.; Wang, Y. Precautionary behavior and depression in older adults during the COVID-19 pandemic: An online cross-sectional study in Hubei, China. Inter. J. Environ. Res. Public Health 2021, 18, 1853. [Google Scholar] [CrossRef]
- Bonell, C.; Michie, S.; Reicher, S.; West, R.; Bear, L.; Yardley, L.; Curtis, V.; Amlôt, R.; Rubin, G.J. Harnessing behavioural science in public health campaigns to maintain “social distancing” in response to the COVID-19 pandemic: Key principles. J. Epidemiol. Commun. Health 2020, 74, 617–619. [Google Scholar] [CrossRef]
- Fakhira, A.D.; Pawitra, A.S.; Diyanah, K.C.; Wikurendra, E.A.; Nagy, I.; Abdeljawad, N.S. Awareness of doing 3M (wearing mask, physical distancing, washing hands) during pandemic era in rural and urban families. J. Kesehat. Lingkung. 2021, 13, 94–101. [Google Scholar] [CrossRef]
- Ye, Y.; Wu, R.; Ge, Y.; Wang, T.; Yao, X.; Yang, Y.; Long, C.; Chen, F.; Tang, S.; Huang, R. Preventive behaviours and family inequalities during the COVID-19 pandemic: A cross-sectional study in China. Infect. Dis. Poverty 2021, 10, 100. [Google Scholar] [CrossRef]
- Duan, Y.; Shang, B.; Liang, W.; Lin, Z.; Hu, C.; Baker, J.S.; Wang, Y.; He, J. Predicting hand washing, mask wearing and social distancing behaviors among older adults during the covid-19 pandemic: An integrated social cognition model. BMC Geriatrics 2022, 22, 1–16. [Google Scholar] [CrossRef]
- Yodmai, K.; Pechrapa, K.; Kittipichai, W.; Charupoonpol, P.; Suksatan, W. Factors Associated with Good COVID-19 Preventive Behaviors Among Older Adults in Urban Communities in Thailand. J. Prim. Care Community Health 2021, 12, 21501327211036251. [Google Scholar] [CrossRef]
- Pakpour, A.H.; Liu, C.H.; Hou, W.L.; Chen, Y.P.; Li, Y.P.; Kuo, Y.J.; Lin, C.Y.; Scarf, D. Comparing Fear of COVID-19 and Preventive COVID-19 Infection Behaviors between Iranian and Taiwanese Older People: Early Reaction May Be a Key. Front. Public Health 2021, 9, 740333. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, R.; Chen, B.; Chen, H.; Li, Y.; Chen, Z.; Zhu, H.; Wang, H. Knowledge, Perceived Beliefs, and Preventive Behaviors Related to COVID-19 among Chinese Older Adults: Cross-Sectional Web-Based Survey. J. Med. Internet Res. 2020, 22, e23729. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Gaube, S.; Fischer, P.; Lermer, E. Hand(y) hygiene insights: Applying three theoretical models to investigate hospital patients’ and visitors’ hand hygiene behavior. PloS ONE 2021, 16, e0245543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Q.; Fang, R.Y.; Zhang, R.; Hagger, M.S.; Hamilton, K. Predicting Hand Washing and Sleep Hygiene Behaviors among College Students: Test of an Integrated Social-Cognition Model. Int. J. Environ. Res. Public Health 2020, 17, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, P.K.; Zhang, C.Q.; Liu, J.D.; Chan, D.K.C.; Si, G.Y.; Hagger, M.S. The process by which perceived autonomy support predicts motivation, intention, and behavior for seasonal influenza prevention in Hong Kong older adults. BMC Public Health 2018, 18, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.Y.; Cheng, Y.L.; Lu, Y.; Hu, Y.H.; Chen, D.F. Handwashing behaviour among Chinese adults: A cross-sectional study in five provinces. Public Health 2013, 127, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Ajilore, K.; Atakiti, I.; Onyenankeya, K. College students’ knowledge, attitudes and adherence to public service announcements on Ebola in Nigeria: Suggestions for improving future Ebola prevention education programmes. Health Educ. J. 2017, 76, 648–660. [Google Scholar] [CrossRef]
- Zhong, B.L.; Luo, W.; Li, H.M.; Zhang, Q.Q.; Liu, X.G.; Li, W.T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, R. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Zhou, G.; Gan, Y.; Ke, Q.; Knoll, N.; Lonsdale, C.; Schwarzer, R. Avoiding exposure to air pollution by using filtering facemask respirators: An application of the Health Action Process Approach. Health Psychol. 2016, 35, 141–147. [Google Scholar] [CrossRef]
- Bonetto, E.; Dezecache, G.; Nugier, A.; Inigo, M.; Mathias, J.-D.; Huet, S.; Pellerin, N.; Corman, M.; Bertrand, P.; Raufaste, E.; et al. Basic human values during the COVID-19 outbreak, perceived threat and their relationships with compliance with movement restrictions and social distancing. PLoS ONE 2021, 16, e0253430. [Google Scholar] [CrossRef] [PubMed]
- Duradoni, M.; Fiorenza, M.; Guazzini, A. When Italians Follow the Rules against COVID Infection: A Psychological Profile for Compliance. COVID 2021, 1, 246–262. [Google Scholar] [CrossRef]
- Fernández, B.R.; Knoll, N.; Hamilton, K.; Schwarzer, R. Social-cognitive antecedents of hand washing: Action control bridges the planning–behaviour gap. Psychol. Health 2016, 31, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lao, C.K.; Li, X.; Zhao, N.; Gou, M.; Zhou, G. Using the health action process approach to predict facemask use and hand washing in the early stages of the COVID-19 pandemic in China. Curr. Psychol. 2021, 17, 2021. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, R.; Luszczynska, A. Perceived self-efficacy. In Predicting and Changing Health Behaviour: Research and Practice with Social Cognition Models, 3rd ed.; Conner, M., Norman, P., Eds.; McGraw-Hill Education: Berkshire, UK, 2005; pp. 225–251. [Google Scholar]
- Kumar, S.; Loughnan, L.; Luyendijk, R.; Hernandez, O.; Weinger, M.; Arnold, F.; Ram, P.K. Handwashing in 51 countries: Analysis of proxy measures of handwashing behavior in multiple indicator cluster surveys and demographic and health surveys, 2010–2013. Am. J. Trop. Med. Hyg. 2017, 97, 447–459. [Google Scholar] [CrossRef]
- Pogrebna, G.; Kharlamov, A. The impact of cross-cultural differences in handwashing patterns on the COVID-19 outbreak magnitude. Regulation and Governance. Adv. Online Publ. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- DeNardo, S. Face Masks Show Cultural Differences. The HAWK Newspaper. 3 March 2020. Available online: https://www.sjuhawknews.com/face-masks-show-cultural-differences/ (accessed on 10 April 2021).
- Ali, M.; Uddin, Z.; Banik, P.C.; Hegazy, F.A.; Zaman, S.; Ambia, A.S.M.; Siddique, M.K.B.; Islam, R.; Khanam, F.; Bahalul, S.M.; et al. Knowledge, Attitude, Practice, and Fear of COVID-19: An Online-Based Cross-cultural Study. Int J. Ment Health Addict. 2021, 1–16. [Google Scholar] [CrossRef]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.P.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178. [Google Scholar] [CrossRef]
- Duan, Y.P.; Peiris, D.L.I.H.K.; Yang, M.; Liang, W.; Baker, J.S.; Hu, C.; Shang, B.R. Lifestyle Behaviors and Quality of Life among Older Adults after the First Wave of the COVID-19 Pandemic in Hubei China. Front. Public Health 2021, 9, 1951. [Google Scholar] [CrossRef]
- Duan, Y.P.; Liang, W.; Wang, Y.P.; Lippke, S.; Lin, Z.H.; Shang, B.R.; Baker, J.S. The effectiveness of sequentially delivered web-based interventions on promoting physical activity and fruit-vegetable consumption among Chinese college students: Mixed methods study. J. Med. Internet Res. 2022, 24, e30566. [Google Scholar] [CrossRef]
- Perloff, L.S.; Fetzer, B.K. Self-other judgments and perceived vulnerability to victimization. J. Pers. Soc. Psychol. 1986, 50, 502–510. [Google Scholar] [CrossRef]
- Dahmen, A.; Keller, F.; Kötting, L.; Derksen, C.; Lippke, S. Angst vor dem Coronavirus, Absicht zum Befolgen der AHA-Regeln und Risikowahrnehmung bezüglich Arztbesuchen: Querschnittsstudie mit psychisch vorerkrankten Menschen. Fear of coronavirus, intention to follow AHA rules, and perceptions of risk regarding physician visits: Cross-sectional study of persons with mental health history. Das Gesundh. 2021, 83, 274–281. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zeng, L.; Chen, C.; Mo, D.; Yuan, S. Knowledge and practice of hand hygiene among hospitalised patients in a tertiary general hospital in China and their attitudes: A cross-sectional survey. BMJ Open 2019, 9, e027736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contzen, N.; Mosler, H.J. Identifying the psychological determinants of handwashing: Results from two cross-sectional questionnaire studies in Haiti and Ethiopia. Am. J. Infect. Control 2015, 43, 826–832. [Google Scholar] [CrossRef]
- Lippke, S.; Keller, F.M.; Derksen, C.; Kötting, L.; Dahmen, A. Hygiene Behaviors and SARS-CoV-2-Preventive Behaviors in the Face of the COVID-19 Pandemic: Self-Reported Compliance and Associations with Fear, SARS-CoV-2 Risk, and Mental Health in a General Population vs. a Psychosomatic Patients Sample in Germany. Hygiene 2022, 2, 28–43. [Google Scholar] [CrossRef]
- O’Boyle, C.A.; Henly, S.J.; Duckett, L.J. Nurses’ motivation to wash their hands: A standardized measurement approach. Appl. Nurs. Res. 2001, 14, 136–145. [Google Scholar] [CrossRef]
- Rosen, L.; Zucker, D.; Brody, D.; Engelhard, D.; Manor, O. The effect of a handwashing intervention on preschool educator beliefs, attitudes, knowledge and self-efficacy. Health Educ. Res. 2009, 24, 686–698. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behaviour: Reactions and reflections. Psychol. Health 2011, 26, 1113–1127. [Google Scholar] [CrossRef]
- Duan, Y.P.; Liang, W.; Guo, L.; Wienert, J.; Si, G.Y.; Lippke, S. Evaluation of a web-based intervention for multiple health behavior changes in patients with coronary heart disease in home-based rehabilitation: Pilot randomized controlled trial. J. Med. Internet Res. 2018, 20, e12052. [Google Scholar] [CrossRef] [Green Version]
- Lippke, S.; Ziegelmann, J.P.; Schwarzer, R.; Velicer, W.F. Validity of stage assessment in the adoption and maintenance of physical activity and fruit and vegetable consumption. Heal. Psychol. 2009, 28, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Luszczynska, A.; Sutton, S. Physical activity after cardiac rehabilitation: Evidence that different types of self-efficacy are important in maintainers and relapsers. Rehabil. Psychol. 2006, 51, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Sniehotta, F.F.; Scholz, U.; Schwarzer, R. Bridging the intention-behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychol. Health 2005, 20, 143–160. [Google Scholar] [CrossRef]
- Lin, C.Y.; Imani, V.; Majd, N.R.; Ghasemi, Z.; Griffiths, M.D.; Hamilton, K.; Hagger, M.S.; Pakpour, A.H. Using an integrated social cognition model to predict COVID-19 preventive behaviours. Br. J. Health Psychol. 2020, 25, 981–1005. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.; Cheung, K.L. Knowledge, socio-cognitive perceptions and the practice of hand hygiene and social distancing during the COVID-19 pandemic: A cross-sectional study of UK university students. BMC Public Health 2021, 21, 426. [Google Scholar] [CrossRef]
- Hagger, M.S.; Smith, S.R.; Keech, J.J.; Moyers, S.A.; Hamilton, K. Predicting social distancing intention and behavior during the COVID-19 pandemic: An integrated social cognition model. Ann. Behav. Med. 2020, 54, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Gillebaart, M.; Ybema, J.; de Ridder, D.T.D. Make it a habit: How habit strength, goal importance and self-control predict hand washing behavior over time during the COVID-19 pandemic. Psychol. Health 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Filindassi, V.; Pedrini, C.; Sabadini, C.; Duradoni, M.; Guazzini, A. Impact of COVID-19 First Wave on Psychological and Psychosocial Dimensions: A Systematic Review. COVID 2022, 2, 273–340. [Google Scholar] [CrossRef]
- Huang, F.; Ding, H.; Liu, Z.; Wu, P.; Zhu, M.; Li, A.; Zhu, T. How fear and collectivism influence public’s preventive intention towards COVID-19 infection: A study based on big data from the social media. BMC Public Health 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, W.; Lau, M.M.; Lau, J.T. Levels and factors derived from the Health Action Process Approach of behavioral intentions to take up COVID-19 vaccination: A random population-based study. Vaccine 2022, 40, 612–620. [Google Scholar] [CrossRef]
Overall (n = 578) | China (n = 356) | Germany (n = 222) | χ2/t | d | p | |
---|---|---|---|---|---|---|
Age, mean (SD) | 68.27 (6.53) | 67.75 (6.24) | 69.09 (6.9) | −2.41 | 0.21 | 0.016 |
BMI, mean (SD) | 24.14 (3.76) | 23.23 (2.95) | 25.6 (4.4) | −7.72 | 0.66 | <0.001 |
Gender, n (%) | 31.28 | 0.54 | <0.001 | |||
Female | 282 (48.8%) | 141 (39.6%) | 141 (63.5%) | |||
Male | 296 (51.2%) | 215 (60.4%) | 81 (36.5%) | |||
Marital status, n (%) | 275.07 | 1.94 | <0.001 | |||
Single | 253 (43.8%) | 60 (16.9%) | 193 (86.9%) | |||
Married/partnered | 324 (56.1%) | 296 (83.1%) | 28 (12.6%) | |||
Missing | 1 (0.2%) | 0 | 1 (0.4%) | |||
Education level, n (%) | 21.8 | 0.22 | <0.001 | |||
Primary school or below | 38 (6.6%) | 20 (5.6%) | 18 (8.1%) | |||
Secondary school | 203 (35.1%) | 154 (43.2%) | 49 (22.1%) | |||
University or above | 318 (55%) | 180 (50.5%) | 138 (62.2%) | |||
Missing | 19 (3.3%) | 2 (0.7%) | 17 (7.6%) | |||
Occupation status, n (%) | 72.79 | 1.68 | <0.001 | |||
Employed/working | 54 (9.3%) | 5 (1.4%) | 49 (23.1%) | |||
Unemployed | 514 (88.9%) | 351 (98.6%) | 163 (76.9%) | |||
Missing | 10 (1.8%) | 0 | 10 (4.5%) | |||
Household income, n (%) | 70.78 | 0.68 | <0.001 | |||
Below the average | 94 (16.3%) | 72 (20.2%) | 22 (10.3%) | |||
Average | 296 (51.2%) | 217 (61.0%) | 79 (37.1%) | |||
Above the average | 179 (31.0%) | 67 (18.8%) | 112 (52.6%) | |||
Missing | 9 (1.5%) | 0 | 9 (4.0%) | |||
Children status *, n (%) | NA | NA | NA | |||
Yes (have children) | 521 (90.1%) | 354 (99.4%) | 167 (75.2%) | |||
No | 57 (9.9%) | 2 (0.6%) | 57 (25.7%) | |||
Living situation, n (%) | 47.81 | 0.85 | <0.001 | |||
Living alone | 102 (17.6%) | 32 (9%) | 70 (31.5%) | |||
Living with children/spouse | 476 (82.4) | 324 (91%) | 152 (68.5%) | |||
Chronic disease, n (%) | 5.57 | 0.22 | 0.018 | |||
Yes | 284 (49.1%) | 189 (53.1%) | 95 (42.8%) | |||
No | 293 (50.7%) | 167 (46.9%) | 126 (56.8%) | |||
Missing | 1 (0.2%) | 0 | 1 (0.4%) | |||
Infected acquaintances, n (%) | 51.96 | 0.81 | <0.001 | |||
Yes | 128 (22.1%) | 45 (12.6%) | 83 (37.4%) | |||
No | 443 (76.6%) | 311 (87.4%) | 132 (59.5%) | |||
Missing | 7 (1.3%) | 0 | 7 (3.1%) | |||
Perceived health status, n (%) | 29.92 | 0.45 | <0.001 | |||
Bad | 62 (10.7%) | 30 (8.4%) | 32 (14.5%) | |||
Satisfactory | 277 (48.0%) | 148 (41.6%) | 129 (58.4%) | |||
Excellent | 238 (41.2%) | 178 (50.0%) | 60 (27.1%) | |||
Missing | 1 (0.2%) | 0 | 1 (0.4%) |
Hand Washing | Facemask Wearing | Physical Distancing | ||||
---|---|---|---|---|---|---|
Mean (SD) | F/t/r | Mean (SD) | F/t/r | Mean (SD) | F/t/r | |
Total | 3.35 (0.6) | 3.76 (0.51) | 3.64 (0.48) | |||
Country | ||||||
China | 3.55 (0.51) | 10.78 a *** | 3.73 (0.56) | −1.63 | 3.62 (0.48) | −0.87 |
Germany | 3.02 (0.6) | 3.80 (0.48) | 3.66 (0.49) | |||
Age | −0.09 * | 0.01 | −0.03 | |||
Gender | ||||||
Female | 3.30 (0.59) | −1.87 | 3.76 (0.49) | 0.18 | 3.67 (0.47) | 1.29 |
Male | 3.39 (0.61) | 3.76 (0.53) | 3.61 (0.49) | |||
Marital status | ||||||
Single | 3.13 (0.63) | −7.88 a *** | 3.76 (0.53) | 0.08 | 3.63 (0.49) | −0.44 |
Married | 3.52 (0.52) | 3.76 (0.5) | 3.64 (0.47) | |||
Education level | ||||||
Primary school or below | 3.25 (0.68) | 2.94 | 3.78 (0.40) | 2.72 | 3.59 (0.53) | 1.87 |
Secondary school | 3.43 (0.57) | 3.70 (0.56) | 3.60 (0.50) | |||
University or above | 3.31 (0.62) | 3.80 (0.48) | 3.67 (0.44) | |||
Occupation status | ||||||
Employed | 3.05 (0.62) | 3.89 *** | 3.75 (0.52) | 0.09 | 3.60 (0.56) | 0.58 |
Unemployed | 3.38 (0.60) | 3.76 (0.46) | 3.64 (0.47) | |||
Household income | ||||||
Below the average | 3.34 (0.63) | 4.27 * | 3.66 (0.53) | 2.87 | 3.57 (0.47) | 2.04 |
Average | 3.41 (0.56) | 3.75 (0.56) | 3.63 (0.51) | |||
Above the average | 3.25 (0.65) | 3.76 (0.51) | 3.69 (0.44) | |||
Children status | ||||||
Yes (have children) | 3.39 (0.59) | 4.66 *** | 3.76 (0.50) | −0.28 | 3.64 (0.47) | −0.73 |
No | 3.00 (0.58) | 3.78 (0.57) | 3.68 (0.54) | |||
Living situation | ||||||
Living alone | 3.19 (0.67) | −2.73 a * | 3.66 (0.66) | −1.84 | 3.68 (0.49) | 0.84 |
Living with children/spouse | 3.38 (0.58) | 3.78 (0.47) | 3.63 (0.48) | |||
Chronic disease | ||||||
Yes | 3.38 (0.61) | 1.32 | 3.75 (0.55) | −0.3 | 3.66 (0.48) | 1.01 |
No | 3.31 (0.60) | 3.77 (0.47) | 3.62 (0.49) | |||
Infected acquaintances | ||||||
Yes | 3.17 (0.61) | −3.86 *** | 3.75 (0.60) | −0.32 | 3.59 (0.50) | −1.31 |
No | 3.40 (0.59) | 3.77 (0.48) | 3.65 (0.48) | |||
Perceived health status | 2.33 | 0.75 | 1.50 | |||
Bad | 3.26 (0.69) | 3.81 (0.50) | 3.71 (0.42) | |||
Satisfactory | 3.32 (0.63) | 3.77 (0.55) | 3.66 (0.49) | |||
Excellent | 3.41 (0.55) | 3.73 (0.47) | 3.60 (0.48) | |||
BMI | −0.19 *** | 0.05 | −0.02 | |||
Past behavior | 2.94 (0.70) | 0.49 *** | 2.53 (1.16) | 0.09 * | 2.87 (0.90) | 0.29 *** |
Motivational factors | ||||||
Health knowledge | 4.22 (0.70) | 3.69 (0.99) | 3.65 (0.99) | |||
Attitude | 5.47 (0.94) | 5.50 (1.02) | 5.62 (0.88) | |||
Subjective norm | 5.64 (0.85) | 5.66 (0.90) | 5.68 (0.80) | |||
Risk perception | 4.06 (1.66) | 4.89 (1.32) | 4.85 (1.35) | |||
Motivational self-efficacy | 5.60 (0.92) | 5.76 (0.76) | 5.50 (0.95) | |||
Intention | 5.67 (0.76) | 5.67 (0.95) | 5.68 (0.79) | |||
Volitional factors | ||||||
Volitional self-efficacy | 5.59 (0.95) | 5.73 (0.85) | 5.63 (0.84) | |||
Planning | 5.35 (1.16) | 5.59 (0.96) | 5.47 (0.97) | |||
Self-monitoring | 5.31 (1.22) | 5.66 (0.89) | 5.44 (1.07) |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | |
Age | −0.002 [−0.01, 0.01] | −0.02 | −0.001 [−0.01, 0.01] | −0.01 | <0.001 [−0.01, 0.01] | −0.003 | <0.001 [−0.01. 0.01] | −0.002 | 0.001 [−0.01, 0.01] | 0.01 |
Marital status | 0.23 [0.13, 0.33] | 0.19 *** | 0.20 [0.11, 0.29] | 0.16 *** | 0.18 [0.09, 0.27] | 0.15 *** | 0.08 [−0.03, 0.18] | 0.06 | 0.07 [−0.04, 0.17] | 0.05 |
Occupation | −0.15 [−0.31, 0.01] | −0.07 | −0.11 [−0.26, 0.04] | −0.05 | −0.10 [−0.25, 0.05] | −0.05 | −0.03 [−0.18, 0.12] | −0.02 | −0.02 [−0.17, 0.13] | −0.01 |
Household income | 0.01 [−0.06, 0.07] | 0.01 | −0.01 [−0.07, 0.05] | −0.01 | −0.01 [−0.07, 0.06] | −0.01 | 0.02 [−0.04, 0.08] | 0.02 | 0.02 [−0.04, 0.08] | 0.02 |
Children status | −0.14 [−0.30, 0.01] | −0.07 | −0.12 [−0.26, 0.03] | −0.06 | −0.10 [−0.24, 0.04] | −0.05 | −0.04 [−0.19, 0.10] | −0.02 | −0.05 [−0.19, 0.10] | −0.02 |
Living situation | 0.06 [−0.06, 0.17] | 0.04 | 0.03 [−0.07, 0.14] | 0.02 | 0.01 [−0.10, 0.12] | 0.01 | −0.03 [−0.14, 0.08] | −0.02 | −0.03 [−0.14, 0.08] | −0.02 |
Infected acquaintances | −0.001 [−0.11, 0.11] | −0.001 | 0.003 [−0.10, 0.11] | 0.002 | 0.003 [−0.10, 0.10] | 0.002 | 0.001 [−0.10, 0.10] | <0.001 | −0.002 [−0.10, 0.10] | −0.002 |
BMI | −0.02 [−0.03, −0.004] | −0.10 ** | −0.01 [−0.02, −0.003] | −0.08 * | −0.01 [−0.02, −0.002] | −0.08 * | −0.01 [−0.02, 0.001] | −0.06 | −0.01 [−0.02, 0.002] | −0.05 |
Past behavior | 0.37 [0.31, 0.43] | 0.43 *** | 0.23 [0.17, 0.29] | 0.27 *** | 0.22 [0.15, 0.28] | 0.25 *** | 0.21 [0.14, 0.27] | 0.24 *** | 0.19 [0.13, 0.26] | 0.22 *** |
Health knowledge | 0.08 [0.04, 0.12] | 0.13 *** | 0.08 [0.04, 0.12] | 0.13 *** | 0.10 [0.06, 0.14] | 0.17 *** | 0.10 [0.06, 0.15] | 0.17 *** | ||
Subjective norm | 0.05 [−0.01, 0.10] | 0.08 | 0.03 [−0.02, 0.09] | 0.05 | 0.02 [−0.03, 0.07] | 0.03 | −0.01 [−0.08, 0.06] | −0.02 | ||
Attitude | 0.08 [0.03, 0.13] | 0.13 ** | 0.05 [−0.002, 0.10] | 0.08 | 0.04 [−0.01, 0.09] | 0.07 | 0.06 [0.01, 0.11] | 0.10 * | ||
Motivational self-efficacy | −0.001 [−0.05, 0.05] | −0.001 | −0.03 [−0.08, 0.02] | −0.05 | −0.03 [−0.08, 0.03] | −0.04 | −0.02 [−0.08, 0.03] | −0.04 | ||
Intention | 0.12 [0.07, 0.17] | 0.20 *** | 0.06 [0.001, 0.12] | 0.10 * | 0.06 [0.004, 0.12] | 0.10 * | 0.03 [−0.03, 0.10] | 0.06 | ||
Volitional self-efficacy | 0.04 [−0.02, 0.09] | 0.06 | 0.04 [−0.02, 0.09] | 0.06 | 0.08 [0.02, 0.14] | 0.13 * | ||||
Planning | 0.11 [0.04, 0.18] | 0.18 ** | 0.10 [0.03, 0.16] | 0.16 ** | 0.13 [0.03, 0.22] | 0.21 ** | ||||
Self-monitoring | 0.02 [−0.04, 0.09] | 0.04 | 0.02 [−0.05, 0.08] | 0.03 | 0.02 [−0.05, 0.09] | 0.03 | ||||
Country | −0.12 [−0.19, −0.06] | −0.20 *** | −0.13 [−0.20, −0.06] | −0.22 *** | ||||||
Country × Health knowledge | 0.01 [−0.03, 0.06] | 0.02 | ||||||||
Country × Subjective norm | 0.05 [−0.01, 0.11] | 0.10 | ||||||||
Country × Attitude | −0.02 [−0.07, 0.03] | −0.04 | ||||||||
Country × Motivational self-efficacy | 0.01 [−0.04, 0.06] | 0.01 | ||||||||
Country × Intention | 0.05 [−0.01, 0.10] | 0.08 | ||||||||
Country × Volitional self-efficacy | −0.08 [−0.13, −0.02] | −0.15 ** | ||||||||
Country × Planning | −0.03 [−0.11, 0.05] | −0.06 | ||||||||
Country × Self-monitoring | −0.02 [−0.08, 0.05] | −0.03 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | |
Past behavior | 0.04 [0.01, 0.08] | 0.09 * | 0.003 [−0.03, 0.04] | 0.04 | 0.003 [−0.03, 0.04] | 0.01 | 0.09 [0.05, 0.14] | 0.20 *** | 0.08 [0.04, 0.13] | 0.19 *** |
Risk perception | −0.01 [−0.06, 0.03] | −0.03 | −0.02 [−0.06, 0.03] | −0.03 | −0.01 [−0.05, 0.04] | −0.01 | −0.01 [−0.06, 0.06] | −0.01 | ||
Subjective norm | 0.02 [−0.04, 0.08] | 0.04 | −0.003 [−0.07, 0.06] | −0.01 | 0.02 [−0.04, 0.09] | 0.05 | −0.01 [−0.09, 0.07] | −0.02 | ||
Attitude | 0.01 [−0.05, 0.07] | 0.02 | −0.01 [−0.07, 0.05] | −0.02 | 0.01 [−0.05, 0.06] | 0.01 | 0.004 [−0.06, 0.06] | 0.01 | ||
Motivational self-efficacy | 0.15 [0.08, 0.22] | 0.30 *** | 0.10 [0.02, 0.17] | 0.19 ** | 0.08 [0.01, 0.15] | 0.16 * | 0.11 [0.02, 0.19] | 0.21 * | ||
Intention | 0.02 [−0.03, 0.07] | 0.04 | −0.03 [−0.08, 0.03] | −0.06 | −0.01 [−0.06, 0.05] | −0.02 | −0.02 [−0.10, 0.05] | −0.04 | ||
Volitional self-efficacy | 0.07 [.01, 0.13] | 0.14 * | 0.05 [−0.01, 0.11] | 0.10 | 0.03 [−0.03, 0.09] | 0.06 | ||||
Planning | 0.04 [−0.03, 0.11] | 0.08 | 0.04 [−0.04, 0.11] | 0.07 | 0.06 [−0.05, 0.16] | 0.11 | ||||
Self-monitoring | 0.07 [−0.004, 0.15] | 0.14 | 0.07 [−0.003, 0.14] | 0.14 | 0.13 [0.04, 0.21] | 0.25 ** | ||||
Country | 0.16 [0.11, 0.22] | 0.32 *** | 0.16 [0.10, 21] | 0.31 *** | ||||||
Country × Risk perception | 0.003 [−0.04, 0.05] | 0.01 | ||||||||
Country × Subjective norm | 0.05 [−0.02, 0.12] | 0.11 | ||||||||
Country × Attitude | 0.02 [−0.04, 0.07] | 0.03 | ||||||||
Country × Motivational self-efficacy | −0.03 [−0.10, 0.05] | −0.06 | ||||||||
Country × Intention | <0.001 [−0.06, 0.06] | −0.001 | ||||||||
Country × Volitional self-efficacy | 0.05 [−0.01, 0.11] | 0.12 | ||||||||
Country × Planning | −0.01 [0.09, 0.08] | −0.02 | ||||||||
Country × Self-monitoring | −0.12 [−0.20, −0.05] | −0.28 ** |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | B [95% CI] | β | |
Past behavior | 0.16 [0.11, 0.20] | 0.29 *** | 0.06 [0.01, 0.11] | 0.11 * | 0.06 [0.02, 0.11] | 0.12 ** | 0.10 [0.06, 0.14] | 0.19 *** | 0.09 [0.05, 0.13] | 0.17 *** |
Health knowledge | 0.02 [−0.02, 0.06] | 0.04 | 0.02 [−0.02, 0.06] | 0.05 | 0.07 [0.03, 0.11] | 0.14 *** | 0.08 [0.04, 0.12] | 0.16 *** | ||
Risk perception | −0.01 [−0.05, 0.03] | −0.01 | −0.01 [−0.05, 0.03] | −0.02 | 0.02 [−0.02, 0.06] | 0.04 | 0.02 [−0.02, 0.05] | 0.03 | ||
Subjective norm | 0.02 [−0.02, 0.07] | 0.05 | 0.01 [−0.03, 0.06] | 0.03 | 0.02 [−0.02, 0.07] | 0.04 | 0.01 [−0.04, 0.06] | 0.01 | ||
Attitude | 0.04 [−0.01, 0.09] | 0.08 | 0.02 [−0.03, 0.07] | 0.04 | 0.01 [−0.04, 0.05] | 0.01 | −0.01 [−0.06, 0.04] | −0.02 | ||
Motivational self-efficacy | 0.02 [−0.03, 0.08] | 0.05 | −0.03 [−0.09, 0.03] | −0.05 | 0.02 [−0.03, 0.08] | 0.05 | 0.05 [−0.01, 0.12] | 0.11 | ||
Intention | 0.13 [0.08, 0.18] | 0.28 *** | 0.07 [0.02, 0.13] | 0.14 * | 0.05 [−0.01, 0.1] | 0.10 | 0.08 [0.01, 0.16] | 0.17 ** | ||
Volitional self-efficacy | 0.13 [0.07, 0.18] | 0.26 *** | 0.10 [0.04, 0.15] | 0.19 *** | 0.06 [−0.001, 0.12] | 0.13 | ||||
Planning | 0.05 [−0.01, 0.11] | 0.10 | 0.06 [−0.001, 0.12] | 0.12 | 0.12 [0.04, 0.19] | 0.24 ** | ||||
Self-monitoring | −0.02 [−0.08, 0.04] | −0.04 | 0.01 [−0.04, 0.07] | 0.03 | −0.02 [−0.11, 0.08] | −0.04 | ||||
Country | 0.17 [0.13, 0.22] | 0.36 *** | 0.17 [0.13, 0.22] | 0.36 *** | ||||||
Country × Health knowledge | −0.03 [−0.07, 0.004] | −0.07 | ||||||||
Country × Risk perception | 0.004 [−0.03, 0.04] | 0.01 | ||||||||
Country × Subjective norm | 0.02 [−0.03, 0.06] | 0.04 | ||||||||
Country × Attitude | 0.04 [−0.01, 0.08] | 0.08 | ||||||||
Country × Motivational self-efficacy | −0.06 [−0.12, −0.003] | −0.14 * | ||||||||
Country × Intention | 0.04 [−0.11, 0.02] | −0.10 | ||||||||
Country × Volitional self-efficacy | 0.07 [0.01, 0.12] | 0.15 * | ||||||||
Country × Planning | −0.07 [−0.14, −0.01] | −0.16 * | ||||||||
Country × Self-monitoring | 0.04 [−0.04, 0.12] | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Lippke, S.; Liang, W.; Shang, B.; Keller, F.M.; Wagner, P.; Baker, J.S.; He, J. Association of Social-Cognitive Factors with Individual Preventive Behaviors of COVID-19 among a Mixed-Sample of Older Adults from China and Germany. Int. J. Environ. Res. Public Health 2022, 19, 6364. https://doi.org/10.3390/ijerph19116364
Duan Y, Lippke S, Liang W, Shang B, Keller FM, Wagner P, Baker JS, He J. Association of Social-Cognitive Factors with Individual Preventive Behaviors of COVID-19 among a Mixed-Sample of Older Adults from China and Germany. International Journal of Environmental Research and Public Health. 2022; 19(11):6364. https://doi.org/10.3390/ijerph19116364
Chicago/Turabian StyleDuan, Yanping, Sonia Lippke, Wei Liang, Borui Shang, Franziska Maria Keller, Petra Wagner, Julien Steven Baker, and Jiali He. 2022. "Association of Social-Cognitive Factors with Individual Preventive Behaviors of COVID-19 among a Mixed-Sample of Older Adults from China and Germany" International Journal of Environmental Research and Public Health 19, no. 11: 6364. https://doi.org/10.3390/ijerph19116364
APA StyleDuan, Y., Lippke, S., Liang, W., Shang, B., Keller, F. M., Wagner, P., Baker, J. S., & He, J. (2022). Association of Social-Cognitive Factors with Individual Preventive Behaviors of COVID-19 among a Mixed-Sample of Older Adults from China and Germany. International Journal of Environmental Research and Public Health, 19(11), 6364. https://doi.org/10.3390/ijerph19116364