Multilevel Modelling of the Individual and Regional Level Variability in Predictors of Incomplete Antenatal Care Visit among Women of Reproductive Age in Ethiopia: Classical and Bayesian Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Data
2.2. Study Variables
2.2.1. Outcome Variable
2.2.2. Independent Variables
2.3. Statistical Analyses
2.3.1. Multilevel Logistic Regression Model
2.3.2. The Null Model
2.3.3. The Final Model
2.4. Bayesian Multilevel Logistic Regression Model
2.5. Software
2.6. Ethics Approval
3. Results
3.1. Descriptive Results
3.2. Result of the Variance Component Model
3.3. Result of the Classical Multilevel Model
3.4. Results of the Bayesian Multilevel Model
4. Discussion
Strength and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- March of Dimes. Your First Prenatal Care Checkup. 2011. Available online: http://www.marchofdimes.org/pregnancy/your-first-prenatal-care-checkup.aspx (accessed on 20 October 2021).
- Tegegne, T.K.; Chojenta, C.; Getachew, T.; Smith, R.; Loxton, D. Antenatal care use in Ethiopia: A spatial and multilevel analysis. BMC Pregnancy Childbirth 2019, 19, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, R.; Laxminarayan, R.; Temmerman, M.; Walker, N. Disease Control Priorities, 3rd ed.; Reproductive, Maternal, Newborn, and Child Health; World Bank: Washington, DC, USA, 2016; Volume 2, Available online: https://openknowledge.worldbank.org/handle/10986/23833 (accessed on 13 January 2022).
- Ashraf, F.; Thaver, I.; Imtiaz, F.; Ayub, A. Quality Assessment of Focused Antenatal Care Service Delivery in Tertiary Care Health Facility. J. Ayub Med Coll. Abbottabad 2017, 29, 219–224. [Google Scholar] [PubMed]
- WHO (World Health Organization). Trends in Maternal Mortality: 1990 to 2015. Estimates by WHO, UNICEF, UN-FPA, the World Bank and the United Nations Population Division; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. Global Maternal Mortality; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Wenjuan, W.; Alva, S.; Wang, S.; Fort, A. Levels and Trends in the Use of Maternal Health Services in Developing Countries; DHS Comparative Reports No. 26; ICF Macro: Calverton, MD, USA, 2011. [Google Scholar]
- Central Statistical Agency (CSA); ICF. Ethiopia Demographic and Health Survey 2016; CSA: Addis Ababa, Ethiopia; ICF: Calverton, MA, USA, 2016. [Google Scholar]
- World Health Organization. Integrated Management of Pregnancy and Childbirth WHO Recommended Interventions for Improving Maternal and Newborn Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Halim, N.; Bohara, A.K.; Ruan, X. Healthy mothers, healthy children: Does maternal demand for antenatal care matter for child health in Nepal? Health Policy Plan. 2011, 26, 242–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, S.S.; Wypij, D.; Das Gupta, M. Dimensions of women’s autonomy and the influence on maternal health care utilization in a North Indian city. Demography 2001, 38, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Wado, Y.D.; Afework, M.F.; Hindin, M.J. Unintended pregnancies and the use of maternal health services in southwestern Ethiopia. BMC Int. Health Hum. Rights 2013, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ethiopian Public Health Institute (EPHI) [Ethiopia] and ICF. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators; EPHI and ICF: Rockville, MD, USA, 2019. [Google Scholar]
- Lincetto, O.; Mothebesoane-anoh, S.; Gomez, P.; Munjanja, S. Antenatal Care: Opportunities for Africa’s Newborns. 2013. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1809124 (accessed on 18 January 2022).
- Fagbamigbe, A.F.; Idemudia, E.S. Wealth and antenatal care utilization in Nigeria: Policy implications. Health Care Women Int. 2017, 38, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Fagbamigbe, A.F.; Idemudia, E.S. Barriers to antenatal care use in Nigeria: Evidences from non-users and implications for maternal health programming. BMC Pregnancy Childbirth 2015, 15, 95. [Google Scholar] [CrossRef] [Green Version]
- Tessema, Z.T.; Teshale, A.B.; Tesema, G.A.; Tamirat, K.S. Determinants of completing recommended antenatal care utiliza-tion in sub-Saharan from 2006 to 2018: Evidence from 36 countries using Demographic and Health Surveys. BMC Pregnancy Childbirth 2021, 21, 192. [Google Scholar] [CrossRef]
- Bolarinwa, O.A.; Tessema, Z.T.; Frimpong, J.B.; Seidu, A.-A.; Ahinkorah, B.O. Spatial distribution and factors associated with modern contraceptive use among women of reproductive age in Nigeria: A multilevel analysis. PLoS ONE 2021, 16, e0258844. [Google Scholar] [CrossRef]
- Nwosu, C.O.; Ataguba, J.E. Socioeconomic inequalities in maternal health service utilisation: A case of antenatal care in Ni-geria using a decomposition approach. BMC Public Health 2019, 19, 1493. [Google Scholar] [CrossRef] [Green Version]
- Tessema, Z.T.; Akalu, T.Y. Spatial Pattern and Associated Factors of ANC Visits in Ethiopia: Spatial and Multilevel Modeling of Ethiopian Demographic Health Survey Data. Adv. Prev. Med. 2020, 2020, 4676591. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, B.; Mathewos, T.; Kebede, M. Skilled delivery inequality in Ethiopia: To what extent are the poorest and uneducated mothers benefiting? Int. J. Equity Health 2017, 16, 82. [Google Scholar] [CrossRef] [PubMed]
- Mpembeni, R.N.; Killewo, J.Z.; Leshabari, M.T.; Massawe, S.N.; Jahn, A.; Mushi, D.; Mwakipa, H. Use pattern of maternal health services and determinants of skilled care during delivery in Southern Tanzania: Implications for achievement of MDG-5 targets. BMC Pregnancy Childbirth 2007, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belayneh, T.; Adefris, M.; Andargie, G. Previous Early Antenatal Service Utilization Improves Timely Booking: Cross-Sectional Study at University of Gondar Hospital, Northwest Ethiopia. J. Pregnancy 2014, 2014, 132494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breslow, N.E.; Clayton, D.G. Approximate Inference in Generalized Linear Mixed Models. J. Am. Statist. Assoc. 1993, 88, 9–25. [Google Scholar]
- Goldstein, H. Multilevel Statistical Models; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 1981, 46, 443–459. [Google Scholar] [CrossRef]
- Dienes, Z. Bayesian Versus Orthodox Statistics: Which Side Are You on? Perspect. Psychol. Sci. 2011, 6, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Kruschke, J.K. Bayesian data analysis. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 658–676. [Google Scholar] [CrossRef]
- DePaoli, S.; Winter, S.D.; Visser, M. The Importance of Prior Sensitivity Analysis in Bayesian Statistics: Demonstrations Using an Interactive Shiny App. Front. Psychol. 2020, 11, 608045. [Google Scholar] [CrossRef]
- Haftu, A.; Hagos, H.; Mehari, M.-A.; Gher, B. Pregnant women adherence level to antenatal care visit and its effect on perinatal outcome among mothers in Tigray Public Health institutions, 2017: Cohort study. BMC Res. Notes 2018, 11, 872. [Google Scholar] [CrossRef]
- Seid, A.; Ahmed, M. Survival time to first antenatal care visit and its predictors among women in Ethiopia. PLoS ONE 2021, 16, e0251322. [Google Scholar] [CrossRef] [PubMed]
- Tesema, G.A.; Mekonnen, T.H.; Teshale, A.B. Individual and community-level determinants, and spatial distribution of institutional delivery in Ethiopia, 2016: Spatial and multilevel analysis. PLoS ONE 2020, 15, e0242242. [Google Scholar] [CrossRef]
- Okedo-Alex, I.N.; Akamike, I.C.; Ezeanosike, O.; Uneke, C.J. Determinants of antenatal care utilisation in sub-Saharan Africa: A systematic review. BMJ Open 2019, 9, e031890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagbamigbe, A.F.; Mashabe, B.; Lepetu, L.; Abel, C. Are the timings and risk factors changing? Survival analysis of timing of first antenatal care visit among pregnant women in Nigeria (2003–2013). Int. J. Women’s Health 2017, 9, 807–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konje, E.T.; Magoma, M.T.N.; Hatfield, J.; Kuhn, S.; Sauve, R.S.; Dewey, D.M. Missed opportunities in antenatal care for improving the health of pregnant women and newborns in Geita district, Northwest Tanzania. BMC Pregnancy Childbirth 2018, 18, 394. [Google Scholar] [CrossRef] [PubMed]
- Terfasa, T.G.; Afework, M.F.; Berhe, F.T. Antenatal Care Utilization and It’s Associated Factors in East Wollega Zone, Ethiopia. J. Pregnancy Child Health 2017, 4, 4172. [Google Scholar] [CrossRef]
- Wang, W.; Winter, R.; Mallick, L.; Florey, L.; Burgert-Brucker, C.; Carter, E. The Relationship between the Health Service Environ-ment and Service Utilization: Linking Population Data to Health Facilities Data in Haiti and Malawi; DHS Analytical Studies No. 51; ICF International: Rockville, MD, USA, 2015. [Google Scholar]
- Kuhnt, J.; Vollmer, S. Antenatal care services and its implications for vital and health outcomes of children: Evidence from 193 surveys in 69 low-income and middle-income countries. BMJ Open 2017, 7, e017122. [Google Scholar] [CrossRef] [Green Version]
- Fekede, B.; Gebremariam, A. Antenatal care service utilization and factors associated in Jimma town (Southwest Ethiopia). Ethiop. Med. J. 2007, 45, 123–133. [Google Scholar]
- Jira, C.; Belachew, T. Determinants of Antenatal care utilization in Jimma Town. Ethiop. J. Health Sci. 2005, 15, 49–61. [Google Scholar]
- Tewodros, B.; Dibaba, Y. Factors affecting antenatal care utilization in Yem special woreda, southwestern Ethiopia. Ethiop. J. Health Sci. 2009, 19, 45–51. [Google Scholar]
- Desalew, A.; Semahegn, A.; Birhanu, S.; Tesfaye, G. Incomplete Vaccination and Its Predictors among Children in Ethiopia: A Systematic Review and Meta-Analysis. Glob. Pediatr. Health 2020, 7, 2333794X20968681. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, K.; Pengpid, S. Socioeconomic Factors in Adherence to HIV Therapy in Low- and Middle-income Countries. J. Health Popul. Nutr. 2013, 31, 150–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Creanga, A.A.; Gillespie, D.G.; Tsui, A.O. Economic Status, Education and Empowerment: Implications for Maternal Health Service Utilization in Developing Countries. PLoS ONE 2010, 5, e11190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.; Hansen, E.H.; Sabroe, S.; Kafle, K.K. Socio-economic status and adherence to tuberculosis treatment: A case-control study in a district of Nepal. Int. J. Tuberc. Lung Dis. 2005, 9, 1134–1139. [Google Scholar]
- Yaya, S.; Bishwajit, G.; Ekholuenetale, M. Factors associated with the utilization of institutional delivery services in Bangladesh. PLoS ONE 2017, 12, e0171573. [Google Scholar] [CrossRef] [Green Version]
- Huda, T.M.; Chowdhury, M.; El Arifeen, S.; Dibley, M.J. Individual and community level factors associated with health facility delivery: A cross sectional multilevel analysis in Bangladesh. PLoS ONE 2019, 14, e0211113. [Google Scholar] [CrossRef]
- Assefa, L.; Alemayehu, M.; Debie, A. Magnitude of institutional delivery service utilization and associated factors among women in pastoral community of Awash Fentale district Afar Regional State, Ethiopia. BMC Res. Notes 2018, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Bishanga, D.R.; Drake, M.; Kim, Y.M.; Mwanamsangu, A.H.; Makuwani, A.M.; Zoungrana, J.; Lemwayi, R.; Rijken, M.J.; Stekelenburg, J. Factors associated with institutional delivery: Findings from a cross-sectional study in Mara and Kagera regions in Tanzania. PLoS ONE 2018, 13, e0209672. [Google Scholar] [CrossRef]
- Fagbamigbe, A.F.; Abel, C.; Mashabe, B.; Adebowale, A.S. Survival analysis and prognostic factors of the timing of first antenatal care visit in Nigeria. Adv. Integr. Med. 2019, 6, 110–119. [Google Scholar] [CrossRef]
- Manyeh, A.K.; Amu, A.; Williams, J.; Gyapong, M. Factors associated with the timing of antenatal clinic attendance among first-time mothers in rural southern Ghana. BMC Pregnancy Childbirth 2020, 20, 47. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, A.A.; Dahiru, T. Predictors of delayed Antenatal Care (ANC) visits in Nigeria: Secondary analysis of 2013 Nigeria De-mographic and Health Survey (NDHS). Pan Afr. Med. J. 2017, 26, 124. [Google Scholar] [CrossRef] [PubMed]
- Tolefac, P.N.; Halle-Ekane, G.E.; Agbor, V.N.; Sama, C.B.; Ngwasiri, C.; Tebeu, P.M. Why do pregnant women present late for their first antenatal care consultation in Cameroon? Matern. Health Neonatol. Perinatol. 2017, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanogo, N.A.; Yaya, S. Wealth Status, Health Insurance, and Maternal Health Care Utilization in Africa: Evidence from Gabon. BioMed Res. Int. 2020, 2020, 4036830. [Google Scholar] [CrossRef] [PubMed]
- Kibusi, S.M.; Sunguya, B.F.; Kimunai, E.; Hines, C.S. Health insurance is important in improving maternal health service utilization in Tanzania—analysis of the 2011/2012 Tanzania HIV/AIDS and malaria indicator survey. BMC Health Serv. Res. 2018, 18, 112. [Google Scholar] [CrossRef]
- Acharya, D.; Khanal, V.; Singh, J.K.; Adhikari, M.; Gautam, S. Impact of mass media on the utilization of antenatal care services among women of rural community in Nepal. BMC Res. Notes 2015, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Twum, P.; Qi, J.; Aurelie, K.K.; Xu, L. Effectiveness of a free maternal healthcare programme under the National Health Insurance Scheme on skilled care: Evidence from a cross-sectional study in two districts in Ghana. BMJ Open 2018, 8, e022614. [Google Scholar] [CrossRef]
- Nageso, D.; Tefera, K.; Gutema, K. Enrollment in community based health insurance program and the associated factors among households in Boricha district, Sidama Zone, Southern Ethiopia; a cross-sectional study. PLoS ONE 2020, 15, e0234028. [Google Scholar] [CrossRef]
Variable | Less than 4 Visit | Greater or Equal to 4 Visits | ||
---|---|---|---|---|
Count | Percent | Count | Percent | |
Number of antenatal care visits | 1812 | 56.8% | 1378 | 43.2% |
Fixed Effect | Estimate | Std. Error | Z-Value | p-Value |
---|---|---|---|---|
Intercept | −0.4562 | 0.1640 | −2.782 | 0.028 |
Random Effect | ||||
0.29 | 0.065 | 4.462 | 0.003 | |
ICC (ρ) | 0.081 |
Variable | Category | Estimate | Std. Error | Z-Value | p-Value | Odds Ratio |
---|---|---|---|---|---|---|
Intercept | 0.591 | 0.120 | 4.92 | 0.0026 | ||
Residence | Urban (ref.) | |||||
Rural | 0.497 | 0.089 | 5.545 | 0.0002 | 1.622 | |
Ever had a terminated pregnancy | No (ref.) | |||||
Yes | −0.166 | 0.076 | −2.184 | 0.0487 | 0.894 | |
Women’s education level | No Formal Education (ref.) | |||||
Primary | −0.056 | 0.058 | −0.964 | 0.334 | 0.658 | |
Secondary | −0.209 | 0.101 | −2.076 | 0.038 | 0.795 | |
Higher | −0.424 | 0.144 | −2.932 | 0.003 | 0.689 | |
Religion | Orthodox (ref.) | |||||
Muslim | 0.104 | 0.264 | 0.395 | 0.692 | 1.724 | |
Protestant | 0.009 | 0.088 | 0.096 | 0.923 | 1.810 | |
Other | 0.082 | 0.073 | 1.119 | 0.263 | 1.737 | |
Distance from a health center | No problem (ref.) | |||||
Slight problem | 0.566 | 0.223 | 2.538 | 0.025 | 1.776 | |
Big problem | 0.108 | 0.048 | 2.251 | 0.038 | 2.973 | |
Wealth index | Poor (ref.) | |||||
Middle | 0.088 | 0.056 | 1.583 | 0.113 | 0.771 | |
Rich | −0.267 | 0.094 | −2.831 | 0.014 | 0.846 | |
Pregnancy complication signs | Yes (ref.) | |||||
No | 0.132 | 0.05 | 2.641 | 0.002 | 2.967 | |
Media exposure | Not at all (ref.) | |||||
Less than Once a week | −0.042 | 0.057 | −0.725 | 0.468 | 0.667 | |
At least Once a week | −0.244 | 0.056 | −4.348 | 0.0001 | 0.718 | |
Almost all | −0.152 | 0.071 | −2.145 | 0.032 | 0.913 | |
Mother’s age | 15–19 (ref.) | |||||
20–24 | −0.103 | 0.115 | −0.898 | 0.369 | 0.855 | |
25–29 | −0.052 | 0.118 | −0.437 | 0.662 | 0.862 | |
30–34 | −0.101 | 0.122 | −0.898 | 0.369 | 0.772 | |
35–39 | −0.155 | 0.142 | −1.094 | 0.274 | 0.812 | |
40–44 | 0.153 | 0.188 | 0.816 | 0.415 | 0.767 | |
45–49 | −0.311 | 0.175 | 3.173 | 0.075 | 0.732 | |
Who decided on the respondent’s health care | Respondent alone (ref.) | |||||
Respondent and husband | −0.131 | 0.057 | −2.29 | 0.037 | 0.703 | |
Respondent and another person | −0.186 | 0.070 | −2.635 | 0.008 | 0.576 | |
Husband alone | 0.073 | 0.056 | 1.687 | 0.057 | 1.194 | |
Occupation | Not working (ref.) | |||||
Managerial | 0.055 | 0.151 | 0.366 | 0.714 | 1.340 | |
Clerical | 0.06 | 0.067 | 0.883 | 0.377 | 1.167 | |
Sales | −0.174 | 0.317 | −0.550 | 0.582 | 1.419 | |
Agricultural | −0.292 | 0.171 | −1.708 | 0.088 | 1.424 | |
Other | 0.108 | 0.353 | 0.094 | 0.760 | 1.114 | |
0.271 | 0.068 | |||||
ICC (ρ) | 0.076 |
Variable | Category | Estimate | Std. Error | 95% CI | Rhat | Bulk_ESS | Tail_ESS | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Intercept | 0.594 | 0.118 | 0.341 | 0.847 | 1.00 | 8795 | 8954 | |
Residence | Urban (ref.) | |||||||
Rural | 0.509 | 0.086 | 0.368 | 0.651 | 1.00 | 11,542 | 10,598 | |
Ever had a terminated pregnancy | No (ref.) | |||||||
Yes | −0.154 | 0.072 | −0.306 | −0.051 | 1.00 | 15,874 | 12,698 | |
Women’s education level | No Formal Education (ref.) | |||||||
Primary | −0.047 | 0.055 | −0.168 | 0.174 | 1.00 | 18,596 | 17,849 | |
Secondary | −0.203 | 0.091 | −0.328 | −0.078 | 1.00 | 19,872 | 19,877 | |
Higher | −0.422 | 0.141 | −0.563 | −0.181 | 1.00 | 20,187 | 19,874 | |
Religion | Orthodox | |||||||
Muslim | 0.103 | 0.265 | −0.105 | 0.218 | 1.00 | 5847 | 4526 | |
Protestant | 0.010 | 0.09 | −0.154 | 0.169 | 1.00 | 3485 | 4596 | |
Other | 0.085 | 0.071 | −0.251 | 0.336 | 1.00 | 6789 | 6875 | |
Distance from a health center | No problem (ref.) | |||||||
Slight problem | 0.568 | 0.221 | 0.316 | 0.818 | 1.00 | 10,564 | 9865 | |
Big problem | 0.104 | 0.045 | 0.012 | 0.198 | 1.00 | 11,895 | 9987 | |
Wealth index | Poor (ref.) | |||||||
Middle | 0.089 | 0.051 | −0.125 | 0.053 | 1.00 | 15,784 | 12,589 | |
Rich | −0.263 | 0.092 | −0.378 | −0.148 | 1.00 | 13,589 | 12,485 | |
Pregnancy complication signs | Yes (ref.) | |||||||
No | 0.136 | 0.048 | 0.051 | 0.221 | 1.00 | 21,448 | 19,874 | |
Media exposure | Not at all (ref.) | |||||||
Less than Once a week | −0.045 | 0.053 | −0.179 | 0.089 | 1.00 | 12,548 | 12,478 | |
At least Once a week | −0.241 | 0.054 | −0.346 | −0.136 | 1.00 | 12,457 | 12,478 | |
Almost all | −0.150 | 0.069 | −0.195 | −0.103 | 1.00 | 13,487 | 13,154 | |
Mother’s age | 15–19 (ref.) | |||||||
20–24 | −0.101 | 0.112 | −0.145 | 0.139 | 1.00 | 9534 | 9845 | |
25–29 | −0.054 | 0.116 | −0.168 | 0.122 | 1.00 | 7846 | 7256 | |
30–34 | −0.103 | 0.121 | −0.196 | 0.128 | 1.00 | 5487 | 6547 | |
35–39 | −0.152 | 0.141 | −0.235 | 0.112 | 1.00 | 4514 | 3984 | |
40–44 | 0.150 | 0.185 | −0.224 | 0.145 | 1.00 | 6589 | 6847 | |
45–49 | −0.313 | 0.176 | −0.487 | 0.189 | 1.00 | 5478 | 5894 | |
Who decided on the respondent’s health care | Respondent alone (ref.) | |||||||
Respondent and husband | −0.129 | 0.055 | −0.194 | −0.064 | 1.00 | 12,457 | 12,254 | |
Respondent and another person | −0.182 | 0.069 | −0.281 | −0.084 | 1.00 | 11,486 | 11,345 | |
Husband alone | 0.071 | .0540 | −0.045 | 0.148 | 1.00 | 10,648 | 10,245 | |
Occupation | Not working (ref.) | |||||||
Managerial | 0.052 | 0.149 | −0.115 | 0.159 | 1.00 | 9845 | 9632 | |
Clerical | 0.061 | 0.066 | −0.068 | 0.186 | 1.00 | 5478 | 5148 | |
Sales | −0.173 | 0.316 | −0.246 | 0.048 | 1.00 | 6487 | 6245 | |
Agricultural | −0.293 | 0.168 | −0.375 | 0.082 | 1.00 | 3487 | 3987 | |
Other | 0.105 | 0.351 | −0.154 | 0.345 | 1.00 | 4578 | 5986 | |
0.283 | 0.064 | 1.00 | 2584 | 3025 | ||||
ICC (ρ) | 0.079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikako, T.U.; Bacha, R.H.; Hagan, J.E., Jr.; Seidu, A.-A.; Kuse, K.A.; Ahinkorah, B.O. Multilevel Modelling of the Individual and Regional Level Variability in Predictors of Incomplete Antenatal Care Visit among Women of Reproductive Age in Ethiopia: Classical and Bayesian Approaches. Int. J. Environ. Res. Public Health 2022, 19, 6600. https://doi.org/10.3390/ijerph19116600
Chikako TU, Bacha RH, Hagan JE Jr., Seidu A-A, Kuse KA, Ahinkorah BO. Multilevel Modelling of the Individual and Regional Level Variability in Predictors of Incomplete Antenatal Care Visit among Women of Reproductive Age in Ethiopia: Classical and Bayesian Approaches. International Journal of Environmental Research and Public Health. 2022; 19(11):6600. https://doi.org/10.3390/ijerph19116600
Chicago/Turabian StyleChikako, Teshita Uke, Reta Habtamu Bacha, John Elvis Hagan, Jr., Abdul-Aziz Seidu, Kenenisa Abdisa Kuse, and Bright Opoku Ahinkorah. 2022. "Multilevel Modelling of the Individual and Regional Level Variability in Predictors of Incomplete Antenatal Care Visit among Women of Reproductive Age in Ethiopia: Classical and Bayesian Approaches" International Journal of Environmental Research and Public Health 19, no. 11: 6600. https://doi.org/10.3390/ijerph19116600
APA StyleChikako, T. U., Bacha, R. H., Hagan, J. E., Jr., Seidu, A. -A., Kuse, K. A., & Ahinkorah, B. O. (2022). Multilevel Modelling of the Individual and Regional Level Variability in Predictors of Incomplete Antenatal Care Visit among Women of Reproductive Age in Ethiopia: Classical and Bayesian Approaches. International Journal of Environmental Research and Public Health, 19(11), 6600. https://doi.org/10.3390/ijerph19116600