Changes in Accommodative and Binocular Function following Phakic Intraocular Lens for High and Low-to-Moderate Myopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Procedure
2.3. Visual Assessment Protocol and Accommodative and Binocular Vision Examination
2.3.1. Accommodative Assessment
2.3.2. Binocular Vision Assessment
2.4. Data Analysis and Statistics
3. Results
3.1. Accommodative Outcomes
3.2. Binocular Vision Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montes-Mico, R.; Ruiz-Mesa, R.; Rodriguez-Prats, J.L.; Tana-Rivero, P. Posterior-chamber phakic implantable collamer lenses with a central port: A review. Acta Ophthalmol. 2021, 99, e288–e301. [Google Scholar] [CrossRef]
- Pinto, C.; Monteiro, T.; Franqueira, N.; Faria-Correia, F.; Mendes, J.; Vaz, F. Posterior chamber collamer phakic intraocular lens implantation: Comparison of efficacy and safety for low and moderate-to-high myopia. Eur. J. Ophthalmol. 2021, 32, 11206721211012861. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, J.; Niu, L.; Shi, W.; Wang, X.; Zhou, X. Long-term evaluation of anterior lens density after implantable collamer lens V4c implantation in patients with myopia over 40 years old. Br. J. Ophthalmol. 2021, 1–6. [Google Scholar] [CrossRef]
- García-Montero, M.; Albarrán Diego, C.; Garzón-Jiménez, N.; Pérez-Cambrodí, R.J.; López-Artero, E.; Ondategui-Parra, J.C. Binocular vision alterations after refractive and cataract surgery: A review. Acta Ophthalmol. 2019, 97, e145–e155. [Google Scholar] [CrossRef]
- He, T.; Zhu, Y.; Zhou, J. Optical quality after posterior chamber Phakic implantation of an intraocular Lens with a central hole (V4c implantable Collamer Lens) under different lighting conditions. BMC Ophthalmol. 2020, 20, 82. [Google Scholar] [CrossRef]
- Tarrant, J.; Severson, H.; Wildsoet, C. Accommodation in emmetropic and myopic young adults wearing bifocal soft contact lenses. Ophthalmic Physiol. Opt. 2008, 28, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Langenbucher, A.; Szentmary, N.; Seitz, B. Magnification and accommodation with phakic intraocular lenses. Ophthalmic Physiol. Opt. 2007, 27, 295–302. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, K.; Shimizu, K.; Aizawa, D.; Ishikawa, H. Time course of accommodation after implantable collamer lens implantation. Am. J. Ophthalmol. 2008, 146, 674–678. [Google Scholar] [CrossRef]
- Rosenfield, M.; Cohen, A.S. Push-up amplitude of accommodation and target size. Ophthalmic Physiol. Opt. 1995, 15, 231–232. [Google Scholar] [CrossRef]
- Zellers, J.A.; Alpert, T.L.; Rouse, M.W. A review of the literature and a normative study of accommodative facility. J. Am. Optom. Assoc. 1984, 55, 31–37. [Google Scholar]
- Gonzalez-Perez, M.; Perez-Garmendia, C.; Barrio, A.R.; Garcia-Montero, M.; Antona, B. Spanish Cross-Cultural Adaptation and Rasch Analysis of the Convergence Insufficiency Symptom Survey (CISS). Transl. Vis. Sci. Technol. 2020, 9, 23. [Google Scholar] [CrossRef]
- Rouse, M.; Borsting, E.; Mitchell, G.L.; Cotter, S.A.; Kulp, M.; Scheiman, M.; Barnhardt, C.; Bade, A.; Yamada, Tomohike the Convergence Insufficiency Treatment Trial (CITT) Investigator Group. Validity of the convergence insufficiency symptom survey: A confirmatory study. Optom. Vis. Sci. 2009, 86, 357–363. [Google Scholar] [CrossRef]
- American Academy of Ophthalmology. Diagnostic evaluation of strabismus and torticollisPediatric ophthalmology and strabismus San Francisco (CA). In American Academy of Ophthalmology Basic and Clinical Science Course; American Academy of Ophthalmology: San Francisco, CA, USA, 2014; pp. 97–120. [Google Scholar]
- Scheiman, M.; Gallaway, M.; Frantz, K.A.; Peters, R.J.; Hatch, S.; Cuff, M.; Mitchell, G.L. Nearpoint of convergence: Test procedure, target selection, and normative data. Optom. Vis. Sci. 2003, 80, 214–225. [Google Scholar] [CrossRef]
- Murray, C.; Newsham, D. The Normal Accommodative Convergence/Accommodation (AC/A) Ratio. J. Binocul. Vis. Ocul. Motil. 2018, 68, 140–147. [Google Scholar] [CrossRef]
- Armstrong, R.A. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol. Opt. 2013, 33, 7–14. [Google Scholar] [CrossRef]
- Sheskin, D. Handbook of Parametric and Nonparametric Statistical Procedures; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Fu, J.; Wang, X.Z.; Wang, N.L.; Wang, J.H.; Zhao, S.Q. Accommodation perimeters after phakic posterior chamber implantable contact lens implantation. Zhonghua Yan Ke Za Zhi 2013, 49, 633–636. [Google Scholar]
- Wan, T.; Yin, H.; Wu, Z.; Yang, Y. Comparative Study of Implantable Collamer Lens Implantation in Treating Four Degrees of Myopia: Six-Month Observation of Visual Results, Higher-Order Aberrations, and Amplitude of Accommodation. Curr. Eye Res. 2020, 45, 839–846. [Google Scholar] [CrossRef]
- Luo, Q.H.; Liu, B.; Chen, L.; Zhou, Q.Q.; Zhou, Y.H.; Wang, K.; Xiong, J. The effects of posterior chamber intraocular lens implantation on accommodative function in high myopia. Zhonghua Yan Ke Za Zhi 2021, 57, 113–121. [Google Scholar] [CrossRef]
- Chen, M.; Long, Q.; Gu, H.; Hong, J. Accommodation changes after visian implantable collamer lens with central hole for high myopia: A STROBE-compliant article. Medicine 2019, 98, e16434. [Google Scholar] [CrossRef]
- Du, C.; Wang, J.; Wang, X.; Dong, Y.; Gu, Y.; Shen, Y. Ultrasound biomicroscopy of anterior segment accommodative changes with posterior chamber phakic intraocular lens in high myopia. Ophthalmology 2012, 119, 99–105. [Google Scholar] [CrossRef]
- Alpern, M. Accommodation and convergence with contact lenses. Am. J. Optom. Arch. Am. Acad Optom. 1949, 26, 379–387. [Google Scholar] [CrossRef]
- Kato, S.; Shimizu, K.; Igarashi, A.; Kawamorita, T. Kinetic visual acuity, stereopsis, and ocular deviation with an implantable collamer lens. J. Cataract Refract. Surg. 2019, 45, 1777–1781. [Google Scholar] [CrossRef]
- Ryu, I.H.; Han, J.; Lee, H.K.; Kim, J.K.; Han, S.H. Changes in the accommodation-convergence relationship after the Artisan phakic intraocular lens implantation for myopic patients. Korean J. Ophthalmol. 2014, 28, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Kohnen, T.; Kook, D.; Morral, M.; Guell, J.L. Phakic intraocular lenses: Part 2: Results and complications. J. Cataract Refract. Surg. 2010, 36, 2168–2194. [Google Scholar] [CrossRef]
- Khokhar, S.; Gupta, S.; Gogia, V.; Tewari, R.; Agarwal, T. Changes in stereoacuity following implantable Collamer lens implantation in patients with myopia. Indian J. Ophthalmol. 2015, 63, 788–790. [Google Scholar] [CrossRef]
- BenEzra, D.; Cohen, E.; Karshai, I. Phakic posterior chamber intraocular lens for the correction of anisometropia and treatment of amblyopia. Am. J. Ophthalmol. 2000, 130, 292–296. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, J.; Yu, K.M. Posterior chamber phakic intraocular lens for the correction of high myopic anisometropic amblyopia in adults. Int. J. Ophthalmol. 2018, 11, 1870–1874. [Google Scholar] [CrossRef]
- Faron, N.; Hoekel, J.; Tychsen, L. Visual acuity, refractive error, and regression outcomes in 169 children with high myopia who were implanted with Ophtec-Artisan or Visian phakic IOLs. J. AAPOS 2021, 25, e21-27 e28. [Google Scholar] [CrossRef]
Total Group (n = 38) | |||
---|---|---|---|
Age (y) Mean ± SD (range) | 29.8 ± 4.7 (21–38) | ||
High-Power Group (n = 19) | Low-to-Moderate-Power Group (n = 19) | ||
Age (y) Mean ± SD (range) | 30.0 ± 5.1 (21–38) | 29.6 ± 4.4 (22–36) | |
Gender (%) | Men | 53.3 % | 47.4% |
Women | 46.7% | 52.6% | |
Preop SE (D) | −7.82 ± 1.18 | −4.57 ± 1.06 |
High-Power Group | Low-to-Moderate-Power Group | |||||
---|---|---|---|---|---|---|
Postoperative | Postoperative | |||||
Mean ± SD p-value | Preoperative | 1 Week | 1 Month | Preoperative | 1 Week | 1 Month |
AA (D) | 11.38 ± 2.82 | 8.66 ± 2.24 0.001 * | 8.39 ± 2.05 0.001 * | 10.70 ± 2.16 | 8.33 ± 1.74 0.008 * | 8.83 ± 2.28 0.008 * |
MAF (cpm) | 11.8 ± 3.8 | 14.7 ± 2.2 0.154 | 13.1 ± 4.5 0.312 | 12.2 ± 2.8 | 12.3 ± 4.3 0.343 | 13.2 ± 3.2 0.234 |
High-Power Group | Low-to-Moderate-Power Group | |||||
---|---|---|---|---|---|---|
Postoperative | Postoperative | |||||
Mean ± SD p-value | Preoperative | 1 Week | 1 Month | Preoperative | 1 Week | 1 Month |
Distance ocular deviation (Δ) | 1.2 ± 3.5 | 0.5 ± 1.3 0.854 | 0.3 ± 1.9 0.124 | 1.1 ± 1.9 | 0.9 ± 1.6 0.705 | 1.3 ± 4.0 0.904 |
Near ocular deviation(Δ) | −4.2 ± 8.4 | −6.2 ± 8.0 0.726 | −2.4 ± 5.7 0.537 | 0.5 ± 4.2 | 0.3 ± 2.1 0.854 | −0.9 ± 6.2 0.291 |
Near convergence amplitude (break) (Δ) | 33.5 ± 8.2 | 31.3 ± 9.5 0.344 | 30.8 ± 11.3 0.502 | 35.0 ± 9.9 | 36.2 ± 10.0 0.611 | 35.3 ± 7.2 0.725 |
Near convergence amplitude (recovery) (Δ) | 30.6 ± 10.7 | 28.5 ± 11.0 0.484 | 28.8 ± 12.5 0.789 | 33.5 ± 8.2 | 33.1 ± 11.5 0.720 | 31.4 ± 9.3 0.753 |
AC/A calculated | 8.1 ± 3.1 | 8.6 ± 3.1 0.472 | 7.0 ± 2.3 0.141 | 6.2 ± 1.4 | 6.3 ± 0.6 0.579 | 6.9 ± 2.3 0.358 |
High-Power Group | Low-to-Moderate-Power Group | |||||
---|---|---|---|---|---|---|
Postoperative | Postoperative | |||||
Mean ± SD p-value | Preoperative | 1 Week | 1 Month | Preoperative | 1 Week | 1 Month |
NPC blur | 7.8 ± 2.5 | 11.7 ± 2.4 <0.001 * | 12.2 ± 3.3 <0.001 * | 8.0 ± 2.1 | 11.7 ± 2.4 0.001 * | 11.3 ± 2.8 0.002 * |
NPC break | 2.9 ± 3.2 | 6.8 ± 4.8 0.026 * | 5.1 ± 5.1 0.073 | 4.3 ± 3.3 | 5.6 ± 4.9 0.649 | 5.9 ± 4.9 0.255 |
NPC recovery | 5.1 ± 5.5 | 8.7 ± 7.0 0.041 * | 7.5 ± 6.9 0.142 | 6.5 ± 4.6 | 10.3 ± 5.2 0.036 * | 8.9 ± 5.5 0.124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Artero, E.; Poyales, F.; Garzón, N.; Matamoros, A.; Sáez, A.; Zhou, Y.; García-Montero, M. Changes in Accommodative and Binocular Function following Phakic Intraocular Lens for High and Low-to-Moderate Myopia. Int. J. Environ. Res. Public Health 2022, 19, 6716. https://doi.org/10.3390/ijerph19116716
López-Artero E, Poyales F, Garzón N, Matamoros A, Sáez A, Zhou Y, García-Montero M. Changes in Accommodative and Binocular Function following Phakic Intraocular Lens for High and Low-to-Moderate Myopia. International Journal of Environmental Research and Public Health. 2022; 19(11):6716. https://doi.org/10.3390/ijerph19116716
Chicago/Turabian StyleLópez-Artero, Esther, Francisco Poyales, Nuria Garzón, Alicia Matamoros, Alba Sáez, Ying Zhou, and María García-Montero. 2022. "Changes in Accommodative and Binocular Function following Phakic Intraocular Lens for High and Low-to-Moderate Myopia" International Journal of Environmental Research and Public Health 19, no. 11: 6716. https://doi.org/10.3390/ijerph19116716
APA StyleLópez-Artero, E., Poyales, F., Garzón, N., Matamoros, A., Sáez, A., Zhou, Y., & García-Montero, M. (2022). Changes in Accommodative and Binocular Function following Phakic Intraocular Lens for High and Low-to-Moderate Myopia. International Journal of Environmental Research and Public Health, 19(11), 6716. https://doi.org/10.3390/ijerph19116716