Association between Neck Circumference and Subclinical Atherosclerosis among Chinese Steelworkers: A Cross-Sectional Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric Measurements
2.3. Assessments of CIMT
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Relationship between WC, NC, and CIMT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 11 April 2022).
- Nguyen-Thanh, H.-T.; Benzaquen, B.S. Screening for subclinical coronary artery disease measuring carotid intima media thickness. Am. J. Cardiol. 2009, 104, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, T.Z.; Lee, M.-S. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc. Imaging 2014, 7, 1025–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef]
- Tchkonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013, 17, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Korenfeld, Y.; Boarin, S.; Korinek, J.; Jensen, M.D.; Parati, G.; Lopez-Jimenez, F. Normal weight obesity: A risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 2010, 31, 737–746. [Google Scholar] [CrossRef]
- Nielsen, S.; Guo, Z.; Johnson, C.M.; Hensrud, D.D.; Jensen, M.D. Splanchnic lipolysis in human obesity. J. Clin. Investig. 2004, 113, 1582–1588. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Fox, C.S.; Massaro, J.M.; Schlett, C.L.; Lehman, S.J.; Meigs, J.B.; O’Donnell, C.J.; Hoffmann, U.; Murabito, J.M. Periaortic fat deposition is associated with peripheral arterial disease: The Framingham heart study. Circulation. Cardiovasc. Imaging 2010, 3, 515–519. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Martin, M.L.; Jensen, M.D. Effects of body fat distribution on regional lipolysis in obesity. J. Clin. Investig. 1991, 88, 609–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, N.; Yu, C.; Ji, Z. Evaluation of neck circumference as a predictor of central obesity and insulin resistance in Chinese adults. Int. J. Clin. Exp. Med. 2015, 8, 19107–19113. [Google Scholar]
- Nafiu, O.O.; Burke, C.; Lee, J.; Voepel-Lewis, T.; Malviya, S.; Tremper, K.K. Neck circumference as a screening measure for identifying children with high body mass index. Pediatrics 2010, 126, e306–e310. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, X.; Shen, Y.; Xu, Y.; Xiong, Q.; Zhang, X.; Xiao, Y.; Bao, Y.; Jia, W. Neck circumference as an effective measure for identifying cardio-metabolic syndrome: A comparison with waist circumference. Endocrine 2017, 55, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Jaksic, V.P.; Grizelj, D.; Livun, A.; Boscic, D.; Ajduk, M.; Kusec, R.; Jaksic, O. Neck adipose tissue—Tying ties in metabolic disorders. Horm. Mol. Biol. Clin. Investig. 2018, 33. [Google Scholar] [CrossRef]
- Liang, J.; Teng, F.; Li, Y.; Liu, X.; Zou, C.; Wang, Y.; Li, H.; Qi, L. neck circumference and insulin resistance in Chinese adults: The Cardiometabolic Risk in Chinese (CRC) Study. Diabetes Care 2013, 36, e145–e146. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, Y.; Macedo, F.Y.; Nambi, V.; Martin, S.S.; Nasir, K.; Wong, N.D.; Boone, J.; Roberts, A.J.; Ballantyne, C.M.; Virani, S.S. Neck circumference is not associated with subclinical atherosclerosis in retired National Football League players. Clin. Cardiol. 2014, 37, 402–407. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; pp. i–xii, 1–253. [Google Scholar]
- Zhou, B.-F.; Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. BES 2002, 15, 83–96. [Google Scholar]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redón, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; Backer, G.D.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, D.H.; Bots, M.L. Imaging of atherosclerosis: Carotid intima-media thickness. Eur. Heart J. 2010, 31, 1682–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruijter, H.M.D.; Peters, S.A.E.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Eijkemans, M.J.; Engström, G.; Evans, G.W.; Graaf, J.d.; Grobbee, D.E.; et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: A meta-analysis. JAMA 2012, 308, 796–803. [Google Scholar] [CrossRef]
- Bots, M.L.; Groenewegen, K.A.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Engström, G.; Evans, G.W.; Graaf, J.d.; Grobbee, D.E.; Hedblad, B.; et al. Common carotid intima-media thickness measurements do not improve cardiovascular risk prediction in individuals with elevated blood pressure: The USE-IMT collaboration. Hypertension 2014, 63, 1173–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maskarinec, G.; Lim, U.; Jacobs, S.; Monroe, K.R.; Ernst, T.; Buchthal, S.D.; Shepherd, J.A.; Wilkens, L.R.; Marchand, L.L.; Boushey, C.J. Diet Quality in Midadulthood Predicts Visceral Adiposity and Liver Fatness in Older Ages: The Multiethnic Cohort Study. Obesity 2017, 25, 1442–1450. [Google Scholar] [CrossRef]
- Zhou, P.A.; Zhang, C.H.; Chen, Y.R.; Li, D.; Song, D.Y.; Liu, H.M.; Zhou, M.Y.; Song, G.S.; Chen, S.Y. Association between Metabolic Syndrome and Carotid Atherosclerosis: A Cross-sectional Study in Northern China. Biomed. Environ. Sci. BES 2019, 32, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, H.; Mahmoudi, P.; Zamani, F.; Moradi, S. Neck circumference and metabolic syndrome: A cross-sectional population-based study. Prim. Care Diabetes 2021, 15, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Namazi, N.; Larijani, B.; Surkan, P.J.; Azadbakht, L. The association of neck circumference with risk of metabolic syndrome and its components in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 657–674. [Google Scholar] [CrossRef]
- Rosenquist, K.J.; Massaro, J.M.; Pencina, K.M.; D’Agostino, R.B.; Beiser, A.; O’Connor, G.T.; O’Donnell, C.J.; Wolf, P.A.; Polak, J.F.; Seshadri, S.; et al. Neck circumference, carotid wall intima-media thickness, and incident stroke. Diabetes Care 2013, 36, e153–e154. [Google Scholar] [CrossRef] [Green Version]
- Stensland-Bugge, E.; Bønaa, K.H.; Joakimsen, O.; Njølstad, I. Sex differences in the relationship of risk factors to subclinical carotid atherosclerosis measured 15 years later: The Tromsø study. Stroke 2000, 31, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Munckhof, I.C.L.v.d.; Jones, H.; Hopman, M.T.E.; Graaf, J.d.; Nyakayiru, J.; Dijk, B.v.; Eijsvogels, T.M.H.; Thijssen, D.H.J. Relation between age and carotid artery intima-medial thickness: A systematic review. Clin. Cardiol. 2018, 41, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Orra, S.; Tadisina, K.; Charafeddine, A.; Derakhshan, A.; Halliburton, S.; Hashem, A.; Doumit, G.; Zins, J.E. The Effect of Age on Fat Distribution in the Neck Using Volumetric Computed Tomography. Plast. Reconstr. Surg. 2021, 147, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet. Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Kim, H.W.; Chantemèle, E.J.B.d.; Weintraub, N.L. Perivascular Adipocytes in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2220–2227. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, G.; Xia, F.; Li, Q.; Han, B.; Chen, Y.; Chen, C.; Lin, D.; Wang, N.; Lu, Y. Neck circumference as an independent indicator of visceral obesity in a Chinese population. Lipids Health Dis. 2018, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, N.; Katritsis, D.; Raggi, P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 2014, 233, 104–112. [Google Scholar] [CrossRef]
- Kwaifa, I.K.; Bahari, H.; Yong, Y.K.; Noor, S.M. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Rami, A.Z.A.; Hamid, A.A.; Anuar, N.N.M.; Aminuddin, A.; Ugusman, A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediat. Inflamm. 2022, 2022, 2734321. [Google Scholar] [CrossRef]
Variables | Total | Normal CIMT | Abnormal CIMT | p Value |
---|---|---|---|---|
n = 3467 | n = 2746 | n = 721 | ||
Sex (male), n (%) | 3136 (90.45) | 2245 (89.04) | 691 (95.84) | <0.001 |
Age (years), mean (SD) | 46.01 (7.87) | 44.91 (7.96) | 50.19 (5.87) | <0.001 |
SBP (mmHg), mean (SD) | 129.53 (16.53) | 128.30 (16.12) | 134.1 (17.27) | <0.001 |
DBP (mmHg), mean (SD) | 82.80 (10.62) | 82.23 (10.44) | 84.98 (10.99) | <0.001 |
FBG (mmol/L), mean (SD) | 6.13 (1.39) | 6.06 (1.33) | 6.40 (1.58) | <0.001 |
TC (mmol/L), mean (SD) | 5.15 (0.98) | 5.08 (0.96) | 5.42 (1.02) | <0.001 |
TG (mmol/L), median (IQR) | 1.29 (0.89–1.94) | 1.26 (0.87–1.93) | 1.37 (0.95–1.97) | 0.003 |
HDL (mmol/L), mean (SD) | 1.31 (0.33) | 1.31 (0.33) | 1.29 (0.33) | 0.225 |
LDL (mmol/L), mean (SD) | 3.25 (0.87) | 3.19 (0.85) | 3.49 (0.91) | <0.001 |
BMI (kg/m2), mean (SD) | 25.21 (3.29) | 25.09 (3.29) | 25.65 (3.27) | <0.001 |
WC (cm), mean (SD) | 89.42 (9.75) | 88.77 (9.80) | 91.89 (9.14) | <0.001 |
WHR, mean (SD) | 0.88 (0.06) | 0.88 (0.06) | 0.90 (0.06) | <0.001 |
NC (cm), mean (SD) | 38.65 (3.27) | 38.44 (3.28) | 39.44 (3.08) | <0.001 |
DASH score, mean (SD) | 21.59 (2.38) | 21.60 (2.37) | 21.55 (2.42) | 0.614 |
Age (years), n (%) | <0.001 | |||
23–39 | 726 (20.94) | 682 (24.84) | 44 (6.10) | |
40–49 | 1425 (41.10) | 1182 (43.04) | 243 (33.70) | |
50–60 | 1316 (37.96) | 882 (32.12) | 434 (60.19) | |
Education level, n (%) | <0.001 | |||
Primary or Middle | 1021 (29.45) | 735 (26.77) | 286 (39.67) | |
High school or college | 1827 (52.70) | 1453 (52.91) | 374 (52.87) | |
University and above | 619 (17.85) | 558 (20.32) | 61 (8.46) | |
Smoking status, n (%) | <0.001 | |||
Never | 1435 (41.39) | 1197 (43.59) | 238 (33.01) | |
Ever | 230 (6.63) | 168 (6.12) | 62 (8.06) | |
Current | 1802 (51.98) | 1381 (50.29) | 421 (58.39) | |
Drinking status, n (%) | <0.001 | |||
Never | 2023 (58.35) | 1644 (59.87) | 379 (52.57) | |
Ever | 116 (3.35) | 81 (2.95) | 35 (4.85) | |
Current | 1328 (38.30) | 1021 (37.18) | 307 (42.58) | |
BMI (kg/m2), n (%) | <0.001 | |||
<25 | 1283 (37.01) | 1062 (38.67) | 221 (30.65) | |
25–29 | 1561 (45.02) | 1216 (44.28) | 345 (47.85) | |
≥30 | 623 (17.97) | 468 (17.04) | 155 (21.5) | |
Physical activity, n (%) | 0.978 | |||
Low | 37 (1.07) | 29 (1.06) | 8 (1.11) | |
Moderate | 245 (7.07) | 193 (7.03) | 52 (7.21) | |
High | 3185 (91.87) | 2524 (91.92) | 661 (91.68) |
Variables | Waist Circumference | Neck Circumference | ||
---|---|---|---|---|
β | p Value | β | p Value | |
SBP | 0.248 | <0.001 | 0.217 | <0.001 |
DBP | 0.165 | <0.001 | 0.165 | <0.001 |
FBG | 0.156 | <0.001 | 0.156 | <0.001 |
TC | 0.121 | <0.001 | 0.071 | <0.001 |
TG | 0.193 | <0.001 | 0.171 | <0.001 |
LDL-C | 0.139 | <0.001 | 0.094 | <0.001 |
Atherosclerosis | Neck Circumference | |||
---|---|---|---|---|
T1 (n = 1155) | T2 (n = 1146) | T3 (n = 1165) | p for Trend | |
Model 1 | 1.00 | 1.59 (1.28 to 1.98) | 2.15 (1.75 to 2.66) | <0.001 |
Model 2 | 1.00 | 1.36 (1.08 to 1.72) | 1.93 (1.54 to 2.41) | <0.001 |
Model 3 | 1.00 | 1.32 (1.04 to 1.65) | 1.76 (1.40 to 2.22) | <0.001 |
Atherosclerosis | Per 1 SD, as Continuous Variable | p Value |
---|---|---|
OR (95% CI) | ||
Model 1 | 1.10 (1.07 to 1.13) | <0.001 |
Model 2 | 1.08 (1.05 to 1.12) | <0.001 |
Model 3 | 1.07 (1.04 to 1.10) | <0.001 |
Groups | Neck Circumference | |||
---|---|---|---|---|
T1 (n = 1155) | T2 (n = 1146) | T3 (n = 1165) | p for Interaction | |
BMI | 0.484 | |||
<25 kg/m2 | 1.00 | 1.20 (0.85 to 1.69) | 1.28 (0.79 to 2.08) | |
≥25 kg/m2 | 1.00 | 1.44 (1.00 to 2.06) | 1.94 (1.37 to 2.76) | |
Abdominal obesity | 0.135 | |||
no | 1.00 | 1.46 (1.09 to 1.95) | 1.48 (0.94 to 2.33) | |
yes | 1.00 | 0.80 (0.52 to 1.24) | 1.16 (0.76 to 1.76) | |
Sex | 0.131 | |||
Male | 1.00 | 1.29 (1.02 to 1.64) | 1.73 (1.36 to 2.19) | |
Female | 1.00 | 1.24 (0.38 to 4.06) | 1.39 (0.98 to 4.70) | |
Age | 0.060 | |||
23–39 | 1.00 | 1.15 (0.48 to 2.73) | 1.63 (0.72 to 3.68) | |
40–49 | 1.00 | 1.30 (0.89 to 1.91) | 1.43 (0.98 to 2.09) | |
50–60 | 1.00 | 1.30 (0.95 to 1.77) | 1.97 (1.43 to 2.69) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wang, L.; Zhang, S.; Feng, H.; Wu, J.; Li, X.; Yuan, J. Association between Neck Circumference and Subclinical Atherosclerosis among Chinese Steelworkers: A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 6740. https://doi.org/10.3390/ijerph19116740
Yu M, Wang L, Zhang S, Feng H, Wu J, Li X, Yuan J. Association between Neck Circumference and Subclinical Atherosclerosis among Chinese Steelworkers: A Cross-Sectional Survey. International Journal of Environmental Research and Public Health. 2022; 19(11):6740. https://doi.org/10.3390/ijerph19116740
Chicago/Turabian StyleYu, Miao, Lihua Wang, Shengkui Zhang, Hongman Feng, Jianhui Wu, Xiaoming Li, and Juxiang Yuan. 2022. "Association between Neck Circumference and Subclinical Atherosclerosis among Chinese Steelworkers: A Cross-Sectional Survey" International Journal of Environmental Research and Public Health 19, no. 11: 6740. https://doi.org/10.3390/ijerph19116740
APA StyleYu, M., Wang, L., Zhang, S., Feng, H., Wu, J., Li, X., & Yuan, J. (2022). Association between Neck Circumference and Subclinical Atherosclerosis among Chinese Steelworkers: A Cross-Sectional Survey. International Journal of Environmental Research and Public Health, 19(11), 6740. https://doi.org/10.3390/ijerph19116740