The Relationships between Physical Activity, Exercise, and Sport on the Immune System
1. Introduction
2. Changed Gene Expression, Exercise and Immune System
3. Ageing, Exercise and Immune System
4. Different Pathologies, Exercise and Immune System
4.1. COVID-19
4.2. Metabolic Syndrome
4.3. Cancer
5. Research Topics
Author Contributions
Funding
Conflicts of Interest
References
- Reese, T.A.; Bi, K.; Kambal, A.; Filali-Mouhim, A.; Beura, L.K.; Bürger, M.C.; Pulendran, B.; Sekaly, R.P.; Jameson, S.C.; Masopust, D.; et al. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host Microbe 2016, 19, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassarman, K.M. Small RNAs in Bacteria: Diverse Regulators of Gene Expression in Response to Environmental Changes. Cell 2002, 109, 141–144. [Google Scholar] [CrossRef] [Green Version]
- You, T.; Disanzo, B.L.; Wang, X.; Yang, R.; Gong, D. Adipose Tissue Endocannabinoid System Gene Expression: Depot Differences and Effects of Diet and Exercise. Lipids Health Dis. 2011, 10, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargreaves, M. Exercise and Gene Expression. Prog. Mol. Biol. Transl. Sci. 2015, 135, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Connolly, P.H.; Caiozzo, V.J.; Zaldivar, F.; Nemet, D.; Larson, J.; Hung, S.P.; Heck, J.D.; Hatfield, G.W.; Cooper, D.M. Effects of Exercise on Gene Expression in Human Peripheral Blood Mononuclear Cells. J. Appl. Physiol. 2004, 97, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Rowbottom, D.G.; Green, K.J. Acute Exercise Effects on the Immune System. Med. Sci. Sports Exerc. 2000, 32, S396–S405. [Google Scholar] [CrossRef]
- Vider, J.; Lehtmaa, J.; Kullisaar, T.; Vihalemm, T.; Zilmer, K.; Kairane, A.; Landõr, A.; Karu, T.; Zilmer, M. Acute Immune Response in Respect to Exercise-Induced Oxidative Stress. Pathophysiology 2001, 7, 263–270. [Google Scholar] [CrossRef]
- Thannickal, V.J.; Fanburg, B.L. Reactive Oxygen Species in Cell Signaling. Am. J. Physiol.—Lung Cell. Mol. Physiol. 2000, 279, 1005–1028. [Google Scholar] [CrossRef] [Green Version]
- Migdal, C.; Serres, M. Espèces Réactives de l’oxygène et Stress Oxydant. Médecine/Sciences 2011, 27, 405–412. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Ryan, L.; Martinez, J.A. Oxidative Stress and Inflammation Interactions in Human Obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef]
- Saade, E.; Canaday, D.H.; Davidson, H.E.; Han, L.F.; Gravenstein, S. Special Considerations for Vaccines and the Elderly. Vaccinations 2019, 35–53. [Google Scholar] [CrossRef]
- Simpson, R.J.; Lowder, T.W.; Spielmann, G.; Bigley, A.B.; LaVoy, E.C.; Kunz, H. Exercise and the Aging Immune System. Ageing Res. Rev. 2012, 11, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Shek, P.N. Exercise, Aging and Immune Function. Int. J. Sports Med. 1995, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G.; Derhovanessian, E.; Larbi, A.; Strindhall, J.; Wikby, A. Cytomegalovirus and Human Immunosenescence. Rev. Med. Virol. 2009, 19, 47–56. [Google Scholar] [CrossRef]
- Ferguson, F.G.; Wikby, A.; Maxson, P.; Olsson, J.; Johansson, B. Immune Parameters in a Longitudinal Study of a Very Old Population of Swedish People: A Comparison between Survivors and Nonsurvivors. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, B378–B382. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, R.S. The Influence of Exercise and Aging on Immune Function. Med. Sci. Sports Exerc. 1994, 26, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Nieman, D.C.; Pedersen, B.K. Exercise, Nutrition and Immune Function. J. Sports Sci. 2007, 22, 115–125. [Google Scholar] [CrossRef]
- Gleeson, M. Immune Function in Sport and Exercise. J. Appl. Physiol. 2007, 103, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Brolinson, P.G.; Elliott, D. Exercise and the Immune System. Clin. Sports Med. 2007, 26, 311–319. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Postmortem Examination of COVID-19 Patients Reveals Diffuse Alveolar Damage with Severe Capillary Congestion and Variegated Findings in Lungs and Other Organs Suggesting Vascular Dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef]
- Nienhold, R.; Ciani, Y.; Koelzer, V.H.; Tzankov, A.; Haslbauer, J.D.; Menter, T.; Schwab, N.; Henkel, M.; Frank, A.; Zsikla, V.; et al. Two Distinct Immunopathological Profiles in Autopsy Lungs of COVID-19. Nat. Commun. 2020, 11, 5086. [Google Scholar] [CrossRef] [PubMed]
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes 2018, 42, S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, J.E.; Bragada, J.A.; Bragada, J.P.; Coelho, J.P.; Pinto, I.G.; Reis, L.P.; Fernandes, P.O.; Morais, J.E.; Magalhães, P.M. Structural Equation Modelling for Predicting the Relative Contribution of Each Component in the Metabolic Syndrome Status Change. Int. J. Environ. Res. Public Health 2022, 19, 3384. [Google Scholar] [CrossRef]
- Santos, A.P.; Santos, A.C.; Castro, C.; Raposo, L.; Pereira, S.S.; Torres, I.; Henrique, R.; Cardoso, H.; Monteiro, M.P. Visceral Obesity and Metabolic Syndrome Are Associated with Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Cancers 2018, 10, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshammary, A.F.; Alharbi, K.K.; Alshehri, N.J.; Vennu, V.; Khan, I.A. Metabolic Syndrome and Coronary Artery Disease Risk: A Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 1773. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P.; Lemieux, I. Abdominal Obesity and Metabolic Syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Einhorn, D.; Reaven, G.M.; Cobin, R.H.; Ford, E.; Ganda, O.P.; Handelsman, Y.; Hellman, R.; Jellinger, P.S.; Kendall, D.; Krauss, R.M.; et al. American College of Endocrinology Position Statement on the Insulin Resistance Syndrome. Endocr. Pract. 2003, 9, 5–21. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the Provisional Report from the WHO Consultation. Diabet. Med. 1999, 16, 442–443. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Strumberg, D.; Brügge, S.; Korn, M.W.; Koeppen, S.; Ranft, J.; Scheiber, G.; Reiners, C.; Mückel, C.; Seeber, S.; Scheulen, M.E. Evaluation of Long-Term Toxicity in Patients after Cisplatin-Based Chemotherapy for Non-Seminomatous Testicular Cancer. Ann. Oncol. 2002, 13, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Shahani, S.; Braga-Basaria, M.; Basaria, S. Androgen Deprivation Therapy in Prostate Cancer and Metabolic Risk for Atherosclerosis. J. Clin. Endocrinol. Metab. 2008, 93, 2042–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Park, H.J.; Park, E.H.; Ju, H.Y.; Oh, C.M.; Kong, H.J.; Jung, K.W.; Park, B.K.; Lee, E.; Eom, H.S.; et al. Nationwide Statistical Analysis of Lymphoid Malignancies in Korea. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 50, 222. [Google Scholar] [CrossRef] [Green Version]
- Talvensaari, K.K.; Lanning, M.; Tapanainen, P.; Knip, M. Long-Term Survivors of Childhood Cancer Have an Increased Risk of Manifesting the Metabolic Syndrome. J. Clin. Endocrinol. Metab. Copyr. 1996, 81, 3051–3055. [Google Scholar]
- Thomson, C.S.; Forman, D. Cancer Survival in England and the Influence of Early Diagnosis: What Can We Learn from Recent EUROCARE Results? Br. J. Cancer 2009, 101 (Suppl. S2), S102–S109. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forte, P.; Branquinho, L.; Ferraz, R. The Relationships between Physical Activity, Exercise, and Sport on the Immune System. Int. J. Environ. Res. Public Health 2022, 19, 6777. https://doi.org/10.3390/ijerph19116777
Forte P, Branquinho L, Ferraz R. The Relationships between Physical Activity, Exercise, and Sport on the Immune System. International Journal of Environmental Research and Public Health. 2022; 19(11):6777. https://doi.org/10.3390/ijerph19116777
Chicago/Turabian StyleForte, Pedro, Luís Branquinho, and Ricardo Ferraz. 2022. "The Relationships between Physical Activity, Exercise, and Sport on the Immune System" International Journal of Environmental Research and Public Health 19, no. 11: 6777. https://doi.org/10.3390/ijerph19116777
APA StyleForte, P., Branquinho, L., & Ferraz, R. (2022). The Relationships between Physical Activity, Exercise, and Sport on the Immune System. International Journal of Environmental Research and Public Health, 19(11), 6777. https://doi.org/10.3390/ijerph19116777