Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Methodology
2.2. Questionnaire Data
2.3. Personal Air Samples
2.4. Blood Serum Samples
2.5. UHPLC-MS/MS Analysis
2.6. Quality Assurance (QA) and Quality Control (QC)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Statistic Malaysia. Selected Agriculture Indicators, Malaysia. 2020. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=72&bul_id=RXVKUVJ5TitHM0cwYWxlOHcxU3dKdz09&menu_id=Z0VTZGU1UHBUT1VJMFlpaXRRR0xpdz09 (accessed on 28 December 2020).
- Mispan, M.R.; Haron, S.H.; Ismail, B.S.; Abd Rahman, N.F.; Khalid, K.; Abdul Rasid, M.Z. The Use of Pesticides in Agriculture Area, Cameron Highlands. Int. J. Sci. Prog. Res. 2015, 15, 19–22. [Google Scholar]
- Baharuddin, M.R.B.; Sahid, I.B.; Noor, M.A.B.M.; Sulaiman, N.; Othman, F. Pesticide Risk Assessment: A Study on Inhalation and Dermal Exposure to 2,4-D and Paraquat among Malaysian Paddy Farmers. J. Environ. Sci. Health B 2011, 46, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Fareed, M.; Pathak, M.K.; Bihari, V.; Kamal, R.; Srivastava, A.K.; Kesavachandran, C.N. Adverse Respiratory Health and Hematological Alterations among Agricultural Workers Occupationally Exposed to Organophosphate Pesticides: A Cross-Sectional Study in North India. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Choudhary, A.; Ali, A.S.; Ali, S.A. Adverse Health Effects of Organophosphate Pesticides among Occupationally Exposed Farm Sprayers: A Case Study of Bhopal Madhya Pradesh, India. Asian J. Biomed. Pharm. Sci. 2014, 4, 30–35. [Google Scholar] [CrossRef]
- Khan, M.; Damalas, C.A. Occupational Exposure to Pesticides and Resultant Health Problems among Cotton Farmers of Punjab, Pakistan. Int. J. Environ. Health Res. 2015, 25, 508–521. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Occupational Pesticide Exposures and Respiratory Health. Int. J. Environ. Res. Public Health 2013, 10, 6442–6471. [Google Scholar] [CrossRef]
- Özkara, A.; Akyıl, D.; Konuk, M. Pesticides, Environmental Pollution, and Health. In Environmental Health Risk-Hazardous Factors to Living Species; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2016. [Google Scholar]
- Department of Standards Malaysia. The Safe Handling of Agricultural Pesticides—Code of Recommended Practice (First Revision) (Malaysian Standard MS 479:2012). In Malaysian Standard; Department of Standards Malaysia: Cyberjaya, Malaysia, 2012. [Google Scholar]
- Hamsan, H.; Ho, Y.B.; Zaidon, S.Z.; Hashim, Z.; Saari, N.; Karami, A. Occurrence of Commonly Used Pesticides in Personal Air Samples and Their Associated Health Risk among Paddy Farmers. Sci. Total Environ. 2017, 603–604, 381–389. [Google Scholar] [CrossRef]
- Sutris, J.M.; How, V.; Sumeri, S.A.; Muhammad, M.; Sardi, D.; Mohd Mokhtar, M.T.; Mohammad, H.; Ghazi, H.F.; Isa, Z.M. Genotoxicity Following Organophosphate Pesticides Exposure among Orang Asli Children Living in an Agricultural Island in Kuala Langat, Selangor, Malaysia. Int. J. Occup. Environ. Med. 2016, 7, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Farina, Y.; Munawar, N.; Abdullah, M.P.; Yaqoob, M.; Nabi, A. Fate, Distribution, and Bioconcentration of Pesticides Impact on the Organic Farms of Cameron Highlands, Malaysia. Environ. Monit. Assess. 2018, 190, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, A.H.; Wee, S.Y.; Aris, A.Z. Occurrence and Potential Risk of Organophosphorus Pesticides in Urbanised Linggi River, Negeri Sembilan, Malaysia. Environ. Geochem. Health 2020, 42, 3703–3715. [Google Scholar] [CrossRef] [PubMed]
- Eka, N.; Retno, S.; Rohman, A. Validation and Quantitative Analysis of Cadmium and Lead in Snake Fruit by Flame Atomic Absorption Spectrophotometry. Int. Food Res. J. 2012, 19, 937–940. [Google Scholar]
- Alavanja, M.C.; Sandler, D.P.; McMaster, S.B.; Zahm, S.H.; McDonnell, C.J.; Lynch, C.F. The Agricultural Health Study. Environ. Health Perspect. 1996, 104, 362–369. [Google Scholar] [CrossRef]
- Andreotti, G.; Hoppin, J.A.; Hou, L.; Koutros, S.; Gadalla, S.M.; Savage, S.A.; Lubin, J.; Blair, A.; Hoxha, M.; Baccarelli, A.; et al. Pesticide Use and Relative Leukocyte Telomere Length in the Agricultural Health Study. PLoS ONE 2015, 10, 1–10. [Google Scholar] [CrossRef]
- Hou, L.; Andreotti, G.; Baccarelli, A.A.; Savage, S.; Hoppin, J.A.; Sandler, D.P.; Barker, J.; Zhu, Z.Z.; Hoxha, M.; Dioni, L.; et al. Lifetime Pesticide Use and Telomere Shortening among Male Pesticide Applicators in the Agricultural Health Study. Environ. Health Perspect. 2013, 121, 919–924. [Google Scholar] [CrossRef]
- Berg, H. Pesticide Use in Rice and Rice–Fish Farms in the Mekong Delta, Vietnam. Crop Prot. 2001, 20, 897–905. [Google Scholar] [CrossRef]
- Choi, H.; Moon, J.; Kim, J. Assessment of the Exposure of Workers to the Insecticide Imidacloprid during Application on Various Field Crops by a Hand- Held Power Sprayer. J. Agric. Food Chem. 2013, 61, 10642–10648. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Lee, J.; Lee, J.; Kim, E.; Liu, K.H.; Lee, H.S.; Kim, J.H. Validation of a Multiresidue Analysis Method for 379 Pesticides in Human Serum Using Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Klánová, J.; Přibylová, P.; Kohoutek, J.; Dalvie, M.A.; Röösli, M.; Degrendele, C. Qualitative Assessment of 27 Current-Use Pesticides in Air at 20 Sampling Sites across Africa. Chemosphere 2020, 258, 127333. [Google Scholar] [CrossRef]
- Stivaktakis, P.D.; Kavvalakis, M.P.; Tzatzarakis, M.N.; Alegakis, A.K.; Panagiotakis, M.N.; Fragkiadaki, P.; Vakonaki, E.; Ozcagli, E.; Hayes, W.A.; Rakitskii, V.N. Long-Term Exposure of Rabbits to Imidaclorpid as Quantified in Blood Induces Genotoxic Effect. Chemosphere 2016, 149, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Health and Safety Executive. Pesticides in Air and on Surfaces. Available online: https://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs94-2.pdf (accessed on 25 July 2017).
- Syngenta Crop Protection, LLC. QUADRIS TOP Material Safety Data Sheet. Available online: https://s3-us-west-1.amazonaws.com/www.agrian.com/pdfs/Quadris_Top_MSDS2.pdf (accessed on 8 February 2021).
- Agriculture Chemicals. Sogatox-M Safety Data Sheet. Available online: http://agrichem.com.my/pdf/msds/crop_care_and_environmental_science_products/insecticide/Sogatox-M.pdf (accessed on 8 February 2021).
- Syngenta Canada, Inc. Altriset Termiticide Material Safety Data Sheet. Available online: www.syngentacropprotection.com›lbldownloadSaveAs%0A (accessed on 8 February 2021).
- Bayer CropScience Pty Ltd. Maxforce® Gold Gel Insecticide Safety Data Sheet. Available online: https://sds.rentokil-initial.com/sds/files/AU-Rentokil-Maxforce_Gold_Gel_Insecticide_SDS-EN-SDS_01_GHS.pdf (accessed on 8 February 2021).
- Bayer CropScience Pty Ltd. Maxforce® Fusion Cockroach Gel Safety Data Sheet. Available online: https://resources.bayer.com.au/resources/uploads/msds/file12009.pdf (accessed on 8 February 2021).
- Occupational Safety and Health Administration. Permissible Exposure Limits—Annotated Table Z-3. Available online: https://www.osha.gov/annotated-pels/table-z-3 (accessed on 8 February 2021).
- Repar Corporation. Propiconazole 3.6 EC Fungicide Material Safety Data Sheet. Available online: http://www.reparcorp.com/pdf/msds/Propiconazole-3.6-EC-MSDS.pdf (accessed on 8 February 2021).
- Syngenta Canada, Inc. FULFILL ® 50WG Insecticide Material Safety Data Sheet. Available online: https://assets.syngenta.ca/pdf/ca/msds/Fulfill_50WG_27274_en_msds.pdf (accessed on 8 February 2021).
- Wako Pure Chemical Industries, Ltd. Tricyclazole Reference Material Safety Data Sheet. Available online: https://www.ajcsd.org/chrip_search/dt/pdf/CI_01_202/W01W0120-1911JGHEEN.PDF (accessed on 8 February 2021).
- Bayer CropScience. FLINT® FUNGICIDE Safety Data Sheet. Available online: https://s3-us-west-1.amazonaws.com/www.agrian.com/pdfs/Flint_Fungicide_MSDS1e.pdf (accessed on 8 February 2021).
- Farcas, A.; Matei, A.V.; Florian, C.; Badea, M.; Coman, G. Health Effects Associated with Acute and Chronic Exposure to Pesticides. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe; Simeonov, L.I., Macaev, F.Z., Simeonova, B.G., Eds.; Springer: Dordrecht, The Netherlands, 2013; ISBN 9400764618. [Google Scholar] [CrossRef]
- Kruger, G.R.; Klein, R.N.; Ogg, C.L.; Vieira, B.C. Sray Drift of Pesticides. Available online: https://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm (accessed on 17 October 2020).
- Behnami, F.; Yousefinejad, S.; Jafari, S.; Neghab, M.; Soleimani, E. Assessment of Respiratory Exposure to Cypermethrin among Farmers and Farm Workers of Shiraz, Iran. Environ. Monit. Assess. 2021, 193, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.F.; Shaheen, M.; Ahmad, I.; Zakir, A.; Nadeem, M.; Chishti, A.A.; Shahid, M.; Bakhsh, K.; Damalas, C.A. Pesticide Exposure in the Local Community of Vehari District in Pakistan: An Assessment of Knowledge and Residues in Human Blood. Sci. Total Environ. 2017, 587–588, 137–144. [Google Scholar] [CrossRef]
- Moshou, H.; Karakitsou, A.; Yfanti, F.; Hela, D.; Vlastos, D.; Paschalidou, A.K.; Kassomenos, P.; Petrou, I. Assessment of Genetic Effects and Pesticide Exposure of Farmers in NW Greece. Environ. Res. 2020, 186, 109558. [Google Scholar] [CrossRef] [PubMed]
- Leili, M.; Ghafiuri-Khosroshahi, A.; Poorolajal, J.; Samiee, F.; Smadi, M.T.; Bahrami, A. Pesticide Residues Levels as Hematological Biomarkers—a Case Study, Blood Serum of Greenhouse Workers in the City of Hamadan, Iran. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Herin, F.; Boutet-Robinet, E.; Levant, A.; Dulaurent, S.; Manika, M.; Galatry-Bouju, F.; Caron, P.; Soulat, J.M. Thyroid Function Tests in Persons with Occupational Exposure to Fipronil. Thyroid 2011, 21, 701–706. [Google Scholar] [CrossRef]
- Hayat, K.; Ashfaq, M.; Ashfaq, U.; Saleem, M.A. Determination of Pesticide Residues in Blood Samples of Villagers Involved in Pesticide Application at District Vehari ( Punjab ), Pakistan. African J. Environ. Sci. Technol. 2010, 4, 666–684. [Google Scholar] [CrossRef]
- Doğanlar, Z.B.; Doğanlar, O.; Tozkir, H.; Gökalp, F.D.; Doğan, A.; Yamaç, F.; Aşkın, O.O.; Aktaş, Ü.E. Nonoccupational Exposure of Agricultural Area Residents to Pesticides: Pesticide Accumulation and Evaluation of Genotoxicity. Arch. Environ. Contam. Toxicol. 2018, 75, 530–544. [Google Scholar] [CrossRef]
- Whyatt, R.M.; Barr, D.B.; Camann, D.E.; Kinney, P.L.; Barr, J.R.; Andrews, H.F.; Hoepner, L.A.; Garfinkel, R.; Hazi, Y.; Reyes, A.; et al. Contemporary-Use Pesticides in Personal Air Samples during Pregnancy and Blood Samples at Delivery among Urban Minority Mothers and Newborns. Environ. Health Perspect. 2003, 111, 749–756. [Google Scholar] [CrossRef]
- Amaral, A.F.S. Pesticides and Asthma: Challenges for Epidemiology. Front. Public Health 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Alshalati, L.M.J. Limited Knowledge and Unsafe Practices in Usage of Pesticides and The Associated Toxicity Symptoms among Farmers in Tullo and Finchawa Rural Kebeles, Hawassa City, Sidama Regional State, Southern Ethiopia. In Emerging Contaminants; Nuro, A., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Ramos, J.S.A.; Pedroso, T.M.A.; Godoy, F.R.; Batista, R.E.; de Almeida, F.B.; Francelin, C.; Ribeiro, F.L.; Parise, M.R.; de Melo e Silva, D. Multi-Biomarker Responses to Pesticides in an Agricultural Population from Central Brazil. Sci. Total Environ. 2021, 754, 141893. [Google Scholar] [CrossRef] [PubMed]
- Amr, S.; Dawson, R.; Saleh, D.A.; Magder, L.S.; St. George, D.M.; El-Daly, M.; Squibb, K.; Mikhail, N.N.; Abdel-Hamid, M.; Khaled, H. Pesticides, Gene Polymorphisms, and Bladder Cancer among Egyptian Agricultural Workers. Arch. Environ. Occup. Health 2015, 70, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonner, M.R.; Freeman, L.E.B.; Hoppin, J.A.; Koutros, S.; Sandler, D.P.; Lynch, C.F.; Hines, C.J.; Thomas, K.; Blair, A.; Alavanja, M.C.R. Occupational Exposure to Pesticides and the Incidence of Lung Cancer in the Agricultural Health Study. Environ. Health Perspect. 2017, 125, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrpour, O.; Karrari, P.; Zamani, N.; Tsatsakis, A.M.; Abdollahi, M. Occupational Exposure to Pesticides and Consequences on Male Semen and Fertility: A Review. Toxicol. Lett. 2014, 230, 146–156. [Google Scholar] [CrossRef]
- Colosio, C.; Alegakis, A.K.; Tsatsakis, A.M. Emerging Health Issues from Chronic Pesticide Exposure: Innovative Methodologies and Effects on Molecular Cell and Tissue Level. Toxicology 2013, 307, 1–2. [Google Scholar] [CrossRef]
- Fuad, M.J.M.; Junaidi, A.B.; Habibah, A.; Hamzah, J.; Toriman, M.E.; Lyndon, N.; Er, A.C.; Selvadurai, S.; Azima, A.M. The Impact Of Pesticides On Paddy Farmers And Ecosystem. Adv. Nat. Appl. Sci. 2012, 6, 65–70. [Google Scholar]
- Negatu, B.; Kromhout, H.; Mekonnen, Y.; Vermeulen, R. Occupational Pesticide Exposure and Respiratory Health: A Large-Scale Cross-Sectional Study in Three Commercial Farming Systems in Ethiopia. Thorax 2017, 72, 498–499. [Google Scholar] [CrossRef] [Green Version]
- Hoppin, J.A.; Umbach, D.M.; London, S.J.; Lynch, C.F.; Alavanja, M.C.R.; Sandler, D.P. Pesticides and Adult Respiratory Outcomes in the Agricultural Health Study. Ann. N. Y. Acad. Sci. 2006, 1076, 343–354. [Google Scholar] [CrossRef]
Target Compounds | Linear Range (ng/mL) | R2 | Recovery % (RSD %), n = 3 | MDL | MQL | |||
---|---|---|---|---|---|---|---|---|
Personal Air (250 ng/Sample) | Blood Serum (250 ng/mL) | Personal Air (ng/sample) | Blood Serum (ng/mL) | Personal Air (ng/sample) | Blood Serum (ng/mL) | |||
Azoxystrobin | 0.1–500 | 0.9998 | 96.5 (4.0) | 95.4 (6.6) | 0.1 | 1.0 | 1.0 | 10.0 |
Buprofezin | 0.1–500 | 0.9995 | 93.7 (4.4) | 87.2 (3.2) | 0.3 | 3.0 | 0.5 | 10.0 |
Chlorantraniliprole | 1.0–500 | 0.9993 | 102.5 (9.2) | 82.9 (13.8) | 0.3 | 3.0 | 2.0 | 12.0 |
Difenoconazole | 1.0–500 | 0.9997 | 97.2 (13.3) | 92.1 (10.9) | 0.5 | 3.0 | 2.5 | 10.0 |
Fipronil | 0.5–500 | 0.9997 | 91.8 (6.1) | 88.1 (4.3) | 0.3 | 1.0 | 0.7 | 9.0 |
Imidacloprid | 0.1–500 | 0.9996 | 98.9 (8.8) | 86.3 (6.3) | 0.2 | 1.0 | 0.7 | 6.0 |
Isoprothiolane | 0.1–500 | 0.9997 | 78.9 (8.50 | 84.3 (7.2) | 0.1 | 1.0 | 0.5 | 8.0 |
Pretilachlor | 1.0–500 | 0.9999 | 90.4 (1.8) | 83.0 (10.3) | 0.5 | 3.0 | 2.0 | 9.0 |
Propiconazole | 0.5–500 | 0.9995 | 88.4 (5.7) | 82.2 (2.8) | 1.0 | 3.0 | 3.0 | 11.0 |
Pymetrozine | 0.1–500 | 0.9999 | 100.6 (3.5) | 90.0 (11.9) | 0.3 | 5.0 | 0.6 | 12.0 |
Tebuconazole | 0.1–500 | 0.9999 | 91.0 (12.3) | 78.9 (7.3) | 0.3 | 1.0 | 0.5 | 8.0 |
Tricyclazole | 0.1–500 | 0.9991 | 104.7 (6.2) | 103.4 (3.6) | 0.1 | 3.0 | 0.5 | 12.0 |
Trifloxystrobin | 0.1–500 | 0.9999 | 99.3 (6.1) | 91.8 (3.6) | 0.5 | 1.0 | 0.7 | 9.0 |
Variables Groups | Mean ± SD | ||
---|---|---|---|
Famers (n = 85) | Non-Farmers (n = 85) | ||
Age (years) | 42.54 ± 11.06 | 40.92 ± 11.18 | |
Variables | Categories | Frequency, n (%) | |
Groups | Farmers (n = 85) | Non-farmers (n = 85) | |
Gender | Male | 85 (100.0) | 85 (100.0) |
Female | 0 (0) | 0 (0) | |
Race | Malay | 85 (100.0) | 85 (100.0) |
Chinese | 0 (0) | 0 (0) | |
Indian | 0 (0) | 0 (0) | |
BMI | Underweight | 2 (2.4) | 0 (0) |
Normal | 40 (47.0) | 27 (31.8) | |
Overweight | 22 (25.9) | 33 (38.8) | |
Obese | 21 (24.7) | 25 (29.4) | |
Educational background | No formal education | 0 (0) | 0 (0) |
Primary | 11 (12.9) | 3 (3.5) | |
Secondary | 72 (84.7) | 36 (42.4) | |
Tertiary | 2 (2.4) | 46 (54.1) | |
Smoking Status | Yes | 43 (50.6) | 43 (50.6) |
No | 42 (49.4) | 42 (49.4) |
Variables | Average | Minimum | Maximum |
---|---|---|---|
Exposure time (hour/day) | 4 | 1 | 12 |
Exposure frequency (day/year) | 169 | 32 | 224 |
Exposure duration (years) | 17 | 1 | 40 |
Target Compounds | Median a (IQR), (ng/m3) | Frequency of Detection, n (%) | p-Value | Z-Score | ||
---|---|---|---|---|---|---|
Farmers | Non-Farmers | Farmers | Non-Farmers | |||
Azoxystrobin | 15.53 (12.17–36.97) | 5.79 (4.20–10.04) | 12 (14.1) | 6 (7.1) | 0.150 | −1.439 |
Buprofezin | 45.15 (16.12–74.56) | 19.05 (10.82–28.57) | 28 (32.9) | 8 (9.4) | <0.001 | −3.957 |
Chlorantraniliprole | 78.94 (50.99–165.29) | ND | 23 (27.1) | 0 (0) | <0.001 | −5.124 |
Difenoconazole | 40.25 (23.22–97.68) | 29.60 (19.24–36.17) | 15 (17.6) | 6 (7.1) | 0.031 | −2.151 |
Fipronil | 132.85 (37.63–238.60) | ND | 12 (14.1) | 0 (0) | <0.001 | −3.579 |
Imidacloprid | 59.26 (43.47–108.12) | 73.66 (58.43-N/A) | 8 (9.4) | 3 (3.5) | 0.128 | −1.524 |
Isoprothiolane | 188.49 (101.76–263.86) | ND | 10 (11.8) | 0 (0) | 0.001 | −3.248 |
Pretilachlor | 143.06 (127.29–236.12) | ND | 8 (9.4) | 0 (0) | 0.004 | −2.888 |
Propiconazole | 186.10 (117.06–240.22) | ND | 10 (11.8) | 0 (0) | <0.001 | −3.248 |
Pymetrozine | 43.10 (20.96–98.91) | 23.41 (8.51-N/A) | 23 (27.1) | 2 (2.4) | <0.001 | −4.581 |
Tebuconazole | 37.78 (20.71–72.57) | 14.30 (8.26–26.78) | 31 (36.5) | 7 (8.2) | <0.001 | −4.634 |
Tricyclazole | 10.69 (6.34–32.50) | 8.19 (6.59–17.37) | 39 (45.9) | 13 (15.3) | <0.001 | −4.372 |
Trifloxystrobin | 83.16 (43.40–226.32) | ND | 19 (22.4) | 0 (0) | <0.001 | −4.601 |
Target Compounds | Farmers’ Exposure (TWA) (ng/m3) | Permissible Exposure Limit (8-h TWA) (ng/m3) |
---|---|---|
Azoxystrobin | 2.55 | 2.00 × 106 a |
Buprofezin | 10.96 | 2.00 × 106 b |
Chlorantraniliprole | 16.0 | 5.00 × 106 c |
Difenoconazole | 4.88 | 8.00 × 106 a |
Fipronil | 10.04 | 3.50 × 104 d |
Imidacloprid | 3.35 | 7.00 × 105 e |
Isoprothiolane | 10.20 | 5.00 × 106 f |
Pretilachlor | 7.71 | N/A |
Propiconazole | 10.35 | 8.00 × 106 g |
Pymetrozine | 9.37 | 8.00 × 105 h |
Tebuconazole | 9.82 | N/A |
Tricyclazole | 5.75 | 3.00 × 106 i |
Trifloxystrobin | 15.96 | 2.70 × 106 j |
Target Compounds | Median a (IQR)(ng/mL) | Frequency of Detection, n (%) | p-Value | Z-Score | ||
---|---|---|---|---|---|---|
Farmers | Non-Farmers | Farmers | Non-Farmers | |||
Azoxystrobin | 210.12 (51.22–235.58) | ND | 6 (7.1) | 0 (0) | 0.013 | −2.486 |
Buprofezin | 75.10 (57.26–165.50) | 48.73 (44.53-N/A) | 10 (11.8) | 2 (2.4) | 0.015 | −2.428 |
Chlorantraniliprole | 73.78 (56.62–137.29) | ND | 19 (22.4) | 0 (0) | <0.001 | −4.601 |
Difenoconazole | 81.32 (51.46–140.39) | 62.74 (56.37-N/A) | 10 (11.8) | 2 (2.4) | 0.016 | −2.400 |
Fipronil | 75.55 (52.83–101.94) | 47.83 (N/A) | 18 (21.2) | 1 (1.2) | <0.001 | −4.156 |
Imidacloprid | 79.96 (48.66–181.84) | 48.58 (N/A) | 9 (10.6) | 1 (1.2) | 0.009 | −2.618 |
Isoprothiolane | 91.00 (66.90–165.09) | ND | 12 (14.1) | 0 (0) | <0.001 | −3.579 |
Pretilachlor | 88.33 (49.08–164.82) | ND | 6 (7.1) | 0 (0) | 0.013 | −2.486 |
Propiconazole | 105.34 (67.99–133.98) | ND | 6 (7.1) | 0 (0) | 0.013 | −2.486 |
Pymetrozine | 124.45 (58.46–188.50) | ND | 7 (8.2) | 0 (0) | 0.007 | −2.693 |
Tebuconazole | 79.33 (58.10–128.05) | 49.66 (48.29- N/A) | 15 (17.6) | 2 (2.4) | <0.001 | −3.373 |
Tricyclazole | 58.27 (53.24–79.15) | 55.89 (48.38-N/A) | 4 (4.7) | 2 (2.4) | 0.402 | −0.838 |
Trifloxystrobin | 209.89 (81.28–238.62) | ND | 5 (5.9) | 0 (0) | 0.024 | −2.263 |
Target Compounds | Personal Air and Blood Serum | Personal Air and Climatological Conditions | Blood Serum and BMI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farmers (n = 85) | Non-Farmers (n = 85) | Wind Speed | Temperature | Humidity | Farmers (n = 85) | Non-Farmers (n = 85) | ||||||||
r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Azoxystrobin | 0.727 ** | <0.001 | N/A | N/A | −0.043 | 0.696 | −0.207 | 0.058 | 0.180 | 0.100 | −0.600 | 0.208 | N/A | N/A |
Buprofezin | 0.656 ** | <0.001 | 0.494 ** | <0.001 | 0.195 | 0.073 | 0.070 | 0.527 | −0.125 | 0.256 | −0.430 | 0.214 | −1.000 | N/A |
Chlorantraniliprole | 0.889 ** | <0.001 | N/A | N/A | −0.342 ** | 0.001 | −0.463 ** | <0.001 | 0.435 ** | <0.001 | 0.147 | 0.547 | N/A | N/A |
Difenoconazole | 0.745 ** | <0.001 | 0.584 ** | <0.001 | −0.031 | 0.779 | −0.111 | 0.314 | 0.150 | 0.171 | 0.236 | 0.511 | −1.000 | N/A |
Fipronil | 0.748 ** | <0.001 | N/A | N/A | 0.048 | 0.665 | −0.061 | 0.581 | −0.002 | 0.988 | −0.092 | 0.717 | N/A | N/A |
Imidacloprid | 0.937 ** | <0.001 | 0.584 ** | <0.001 | 0.077 | 0.485 | −0.006 | 0.954 | −0.034 | 0.759 | 0.383 | 0.308 | N/A | N/A |
Isoprothiolane | 0.917 ** | <0.001 | N/A | N/A | 0.059 | 0.590 | 0.025 | 0.818 | −0.093 | 0.397 | 0.224 | 0.484 | N/A | N/A |
Pretilachlor | 0.868 ** | <0.001 | N/A | N/A | −0.023 | 0.834 | 0.039 | 0.726 | −0.093 | 0.399 | −0.143 | 0.787 | N/A | N/A |
Propiconazole | 0.746 ** | <0.001 | N/A | N/A | 0.252 * | 0.020 | 0.175 | 0.108 | −0.113 | 0.304 | 0.200 | 0.704 | N/A | N/A |
Pymetrozine | 0.548 ** | <0.001 | N/A | N/A | 0.148 | 0.176 | 0.124 | 0.258 | −0.202 | 0.064 | 0.393 | 0.383 | N/A | N/A |
Tebuconazole | 0.643 ** | <0.001 | 0.517 ** | <0.001 | 0.142 | 0.195 | 0.096 | 0.384 | −0.099 | 0.369 | −0.368 | 0.177 | −1.000 | N/A |
Tricyclazole | 0.367 ** | <0.001 | 0.172 | 0.116 | 0.219 * | 0.044 | 0.047 | 0.668 | −0.006 | 0.953 | 0.400 | 0.600 | −1.000 | N/A |
Trifloxystrobin | 0.556 ** | <0.001 | N/A | N/A | 0.129 | 0.241 | 0.095 | 0.390 | −0.106 | 0.332 | 0.000 | 1.000 | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudzi, S.K.; Ho, Y.B.; Tan, E.S.S.; Jalaludin, J.; Ismail, P. Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 6806. https://doi.org/10.3390/ijerph19116806
Rudzi SK, Ho YB, Tan ESS, Jalaludin J, Ismail P. Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia. International Journal of Environmental Research and Public Health. 2022; 19(11):6806. https://doi.org/10.3390/ijerph19116806
Chicago/Turabian StyleRudzi, Siti Khairunnisaq, Yu Bin Ho, Eugenie Sin Sing Tan, Juliana Jalaludin, and Patimah Ismail. 2022. "Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia" International Journal of Environmental Research and Public Health 19, no. 11: 6806. https://doi.org/10.3390/ijerph19116806
APA StyleRudzi, S. K., Ho, Y. B., Tan, E. S. S., Jalaludin, J., & Ismail, P. (2022). Exposure to Airborne Pesticides and Its Residue in Blood Serum of Paddy Farmers in Malaysia. International Journal of Environmental Research and Public Health, 19(11), 6806. https://doi.org/10.3390/ijerph19116806