Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Anthropometric Assessment
2.2.2. Bioelectrical Impedance Analysis Assessment
2.2.3. Hemodynamic Assessment
2.2.4. Blood Collection
2.2.5. Hemodynamic and Blood Composite Score
2.2.6. Functional Capacity Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Measures | p-Value | Rank | q-Value |
---|---|---|---|
Weight (kg) | 0.001 | 1 | 0.001563 |
BMI (kg/m²) | 0.001 | 2 | 0.001613 |
FTC (A.U.) | 0.001 | 3 | 0.001667 |
Total Body Water (L) | 0.001 | 4 | 0.001724 |
Intracellular Water (L) | 0.001 | 5 | 0.001786 |
Extracellular Water (L) | 0.001 | 6 | 0.001852 |
Body fat (kg) | 0.001 | 7 | 0.001923 |
Visceral fat (cm2) | 0.001 | 8 | 0.002 |
Soft lean mass (kg) | 0.001 | 9 | 0.002083 |
Fat free mass (kg) | 0.001 | 10 | 0.002174 |
Body cell mass (kg) | 0.001 | 11 | 0.002273 |
10-foot line (nr) | 0.006 | 12 | 0.002381 |
Time-up-and-go (s) | 0.009 | 13 | 0.0025 |
6MWT (m) | 0.011 | 14 | 0.002632 |
SOOL (s) | 0.053 | 15 | 0.002778 |
ECW/ICW | 0.075 | 16 | 0.002941 |
DBP (mmHg) | 0.079 | 17 | 0.003125 |
ECW/BCM | 0.085 | 18 | 0.003333 |
ECW/TBW | 0.095 | 19 | 0.003571 |
Triglycerides (mg/dL) | 0.12 | 20 | 0.003846 |
Chair-stand (reps) | 0.143 | 21 | 0.004167 |
Arm Curl (reps) | 0.179 | 22 | 0.004545 |
Phase Angle (º) | 0.247 | 23 | 0.005 |
HBC (A.U.) | 0.281 | 24 | 0.005556 |
TC (mg/dL) | 0.309 | 25 | 0.00625 |
SBP (mmHg) | 0.312 | 26 | 0.007143 |
Age (years) | 0.797 | 27 | 0.008333 |
LDL (mg/dL) | 0.854 | 28 | 0.01 |
HDL (mg/dL) | 0.872 | 29 | 0.0125 |
Height (cm) | 0.909 | 30 | 0.016667 |
RHR (bpm) | 0.97 | 31 | 0.025 |
Glucose (mg/dL) | 0.971 | 32 | 0.05 |
Measures | p-Value | Rank | q-Value |
---|---|---|---|
SBP | 0.038 | 6 | 0.001851852 |
Chair-stand | 0.008 | 3 | 0.001666667 |
TUG | <0.001 | 1 | 0.0015625 |
Arm Curl | 0.001 | 2 | 0.001612903 |
6MWT | 0.036 | 5 | 0.001785714 |
10-foot line | 0.074 | 7 | 0.001923077 |
FTC | 0.012 | 4 | 0.001724138 |
References
- Merijanti, L.I.E.T.; Pusparini, M.; Alvina, M.T. Diastolic Blood Pressure Related to ABI Values Use for Peripheral Arterial Disease Screening in Women Over 50 Years Old. Int. J. Pharm. Res. 2020, 12, 2713–2723. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics Overview 2019: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Teixeira-Samela, L.; Santiago, L.; Lima, R.; Lana, D.; Camargos, F.; Cassiano, J. Functional performance and quality of life related to training and detraining of community-dwelling elderly. Disabil. Rehabil. 2005, 27, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- da Câmara, S.M.A.; Zunzunegui, M.V.; Pirkle, C.; Moreira, M.A.; Maciel, Á.C.C. Menopausal status and physical performance in middle aged women: A cross-sectional community-based study in Northeast Brazil. PLoS ONE 2015, 10, e0119480. [Google Scholar]
- Karlamangla, A.S.; Lachman, M.E.; Han, W.; Huang, M.; Greendale, G.A. Evidence for cognitive aging in midlife women: Study of women’s health across the nation. PLoS ONE 2017, 12, e0169008. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.; Hill, K.; Ball, M.; Hetherington, S.; Williams, A. The long-term benefits of a multi-component exercise intervention to balance and mobility in healthy older adults. Gerontol. Geriatr. 2011, 52, 211–216. [Google Scholar] [CrossRef]
- Alves, R.V.; Mota, J.; Costa, M.D.C.; Alves, J.G.B. Aptidão física relacionada à saúde de idosos: Influência da hidroginástica. Rev. Bras. Med. Do Esporte 2004, 10, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Rikli, R.E.; Jones, C.J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Act. 1999, 7, 162–181. [Google Scholar] [CrossRef]
- Roubenoff, R. Sarcopenia and its implications for the elderly. Eur. J. Clin. Nutr. 2000, 54, S40–S47. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Bastawrous, M.C.; Piernas, C.; Bastawrous, A.; Oke, J.; Lasserson, D.; Mathenge, W.; Burton, M.J.; Jebb, S.A.; Kuper, H. Reference values for body composition and associations with blood pressure in Kenyan adults aged ≥ 50 years old. Eur. J. Clin. Nutr. 2019, 73, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, R.; Reginster, J.-Y.; Arnal, J.-F.; Bautmans, I.; Beaudart, C.; Bischoff-Ferrari, H.; Biver, E.; Boonen, S.; Brandi, M.-L.; Chines, A. Quality of life in sarcopenia and frailty. Calcif. Tissue Int. 2013, 93, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Cruz-Jentoft, A.J.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing 2013, 42, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karinkanta, S.; Heinonen, A.; Sievänen, H.; Uusi-Rasi, K.; Pasanen, M.; Ojala, K.; Fogelholm, M.; Kannus, P. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: Randomized, controlled trial. Osteoporos. Int. 2007, 18, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Dipa, M.I.; Nessa, A.; Firoz, S.; Aktar, N.; Israt, S.; Sharmin, A. Evaluation of the Changes of Blood Pressure and Serum Calcium Level In Postmenopausal Women. Mymensingh Med. J. MMJ 2020, 29, 509–515. [Google Scholar]
- Ferrara, A.; Barrett-Connor, E.; Shan, J. Total, LDL, and HDL cholesterol decrease with age in older men and women: The Rancho Bernardo Study 1984–1994. Circulation 1997, 96, 37–43. [Google Scholar] [CrossRef]
- Gobal, F.A.; Mehta, J.L. Management of dyslipidemia in the elderly population. Ther. Adv. Cardiovasc. Dis. 2010, 4, 375–383. [Google Scholar] [CrossRef]
- Kreisberg, R.A.; Kasim, S. Cholesterol metabolism and aging. Am. J. Med. 1987, 82, 54–60. [Google Scholar] [CrossRef]
- Cauley, J.A.; Gutai, J.P.; Kuller, L.H.; Powell, J.G. The relation of endogenous sex steroid hormone concentrations to serum lipid and lipoprotein levels in postmenopausal women. Am. J. Epidemiol. 1990, 132, 884–894. [Google Scholar] [CrossRef]
- Halperin, R.O.; Sesso, H.D.; Ma, J.; Buring, J.E.; Stampfer, M.J.; Michael Gaziano, J. Dyslipidemia and the risk of incident hypertension in men. Hypertension 2006, 47, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Takada, H.; Nishiyama, Y.; Kodani, E.; Saiki, Y.; Kato, K.; Kawada, T. Dyslipidemia and the risk of developing hypertension in a working-age male population. J. Am. Heart Assoc. 2016, 5, e003053. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.; Zhu, X.; Zhang, Y.; Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haffner, S.M. Abdominal adiposity and cardiometabolic risk: Do we have all the answers? Am. J. Med. 2007, 120, S10–S16. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.T. Physical fitness and activity as separate heart disease risk factors: A meta-analysis. Med. Sci. Sports Exerc. 2001, 33, 754. [Google Scholar] [CrossRef]
- Xue, F.; Michels, K.B. Diabetes, metabolic syndrome, and breast cancer: A review of the current evidence. Am. J. Clin. Nutr. 2007, 86, 823S–835S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaccardi, F.; O’Donovan, G.; Webb, D.R.; Yates, T.; Kurl, S.; Khunti, K.; Davies, M.J.; Laukkanen, J.A. Cardiorespiratory fitness and risk of type 2 diabetes mellitus: A 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis 2015, 243, 131–137. [Google Scholar] [CrossRef]
- Peel, J.B.; Sui, X.; Adams, S.A.; Hébert, J.R.; Hardin, J.W.; Blair, S.N. A prospective study of cardiorespiratory fitness and breast cancer mortality. Med. Sci. Sports Exerc. 2009, 41, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debette, S.; Beiser, A.; Hoffmann, U.; DeCarli, C.; O’Donnell, C.J.; Massaro, J.M.; Au, R.; Himali, J.J.; Wolf, P.A.; Fox, C.S. Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann. Neurol. 2010, 68, 136–144. [Google Scholar] [CrossRef] [PubMed]
- DeFina, L.F.; Willis, B.L.; Radford, N.B.; Gao, A.; Leonard, D.; Haskell, W.L.; Weiner, M.F.; Berry, J.D. The association between midlife cardiorespiratory fitness levels and later-life dementia: A cohort study. Ann. Intern. Med. 2013, 158, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Ford, E.S.; Li, C.; Tsai, J.; Dhingra, S.; Balluz, L.S. Waist circumference, abdominal obesity, and depression among overweight and obese US adults: National Health and Nutrition Examination Survey 2005–2006. BMC Psychiatry 2011, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shomaker, L.B.; Tanofsky-Kraff, M.; Zocca, J.M.; Field, S.E.; Drinkard, B.; Yanovski, J.A. Depressive symptoms and cardiorespiratory fitness in obese adolescents. J. Adolesc. Health 2012, 50, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rexrode, K.M.; Van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: Sixteen years of follow-up in US women. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Kampert, J.B.; Barlow, C.E.; Nichaman, M.Z.; Gibbons, L.W.; Paffenbarger, R.S., Jr.; Blair, S.N. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999, 282, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Wang, J.; Heymsfield, S.B.; Pierson, R.N. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Mattar, J.A. Application of total body bioimpedance to the critically ill patient. Brazilian Group for Bioimpedance Study. New Horiz. 1996, 4, 493–503. [Google Scholar]
- Sardinha, L.B. Physiology of exercise and phase angle: Another look at BIA. Eur. J. Clin. Nutr. 2018, 72, 1323–1327. [Google Scholar] [CrossRef]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Schwenk, A.; Beisenherz, A.; Römer, K.; Kremer, G.; Salzberger, B.; Elia, M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am. J. Clin. Nutr. 2000, 72, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Ott, M.; Fischer, H.; Polat, H.; Helm, E.B.; Frenz, M.; Caspary, W.F.; Lembcke, B. Bioelectrical impedance analysis as a predictor of survival in patients with human immunodeficiency virus infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology Off. Publ. Int. Retrovirology Assoc. 1995, 9, 20–25. [Google Scholar] [CrossRef]
- Toso, S.; Piccoli, A.; Gusella, M.; Menon, D.; Bononi, A.; Crepaldi, G.; Ferrazzi, E. Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 2000, 16, 120–124. [Google Scholar] [CrossRef]
- Maggiore, Q.; Nigrelli, S.; Ciccarelli, C.; Grimaldi, C.; Rossi, G.A.; Michelassi, C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996, 50, 2103–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pupim, L.B.; Kent, P.; Ikizler, T.A. Bioelectrical impedance analysis in dialysis patients. Miner. Electrolyte Metab. 1999, 25, 400–406. [Google Scholar] [CrossRef] [PubMed]
- GIBI Brazilian Group for Bioimpedance Study. Total body bioelectrical impedance measurement as a progressive outcome prediction and therapeutic index in the comparison between septic and non septic patients: A multicenter Brazilian study. Rev. Metab. Nutr. 1995, 2, 159–170. [Google Scholar]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Buffa, R.; Saragat, B.; Succa, V.; Ruggiu, R.; Carboni, L.; Putzu, P.F.; Marini, E. Elderly subjects with type 2 diabetes show altered tissue electrical properties. Nutrition 2013, 29, 132–137. [Google Scholar] [CrossRef]
- WHO. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 10 March 2022).
- Yang, E.M.; Park, E.; Ahn, Y.H.; Choi, H.J.; Kang, H.G. Measurement of Fluid Status Using Bioimpedance Methods in Korean Pediatric Patients on Hemodialysis. J. Korean Med. Sci. 2017, 32, 1828–1834. [Google Scholar] [CrossRef] [Green Version]
- Buckinx, F.; Reginster, J.; Dardenne, N.; Croisiser, J.; Kaux, J.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry : A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; Matias, C.N.; Nunes, C.L.; Santos, D.A.; Marini, E.; Lukaski, H.C.; Sardinha, L.B. Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur. J. Clin. Nutr. 2019, 73, 1077–1083. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals: Part 1: Blood Pressure Measurement in Humans: A Statement for Professionals From the Subcommittee of Professional and Public Education of the American Heart Association Cou. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.; Jones, C. The development and validation of a functional fitness test for community-residimg older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Rose, D.J.; Lucchese, N.; Wiersma, L.D. Development of a Multidimensional Balance Scale for Use With Functionally Independent Older Adults. Arch. Phys. Med. Rehabil. 2006, 87, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cramer, A.O.J.; van Ravenzwaaij, D.; Matzke, D.; Steingroever, H.; Wetzels, R.; Grasman, R.P.P.P.; Waldorp, L.J.; Wagenmakers, E.J. Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychon. Bull. Rev. 2016, 23, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.W. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, Michigan, 1988. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* power 3: A flexible statistical power analysis program for the social, Behavioral and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Selberg, O.; Selberg, D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur. J. Appl. Physiol. 2002, 86, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Garlini, L.M.; Alves, F.D.; Ceretta, L.B.; Perry, I.S.; Souza, G.C.; Clausell, N.O. Phase angle and mortality: A systematic review. Eur. J. Clin. Nutr. 2018, 73, 495–508. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kusakabe, T.; Arai, H.; Yamamoto, Y.; Nakao, K.; Ikeue, K.; Ishihara, Y.; Tagami, T.; Yasoda, A.; Ishii, K.; et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J. Cachexia. Sarcopenia Muscle 2022, 13, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, M. Reliability and Variability of Bioimpedance Measures in Normal Adults: Effects of Age, Gender, and Body Mass. Am. J. Phys. Anthropol. 2003, 122, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Buffa, R.; Floris, G.; Marini, E. Migration of the bioelectrical impedance vector in healthy elderly subjects. Nutrition 2003, 19, 917–921. [Google Scholar] [CrossRef]
- Saragat, B.; Buffa, R.; Mereu, E.; De Rui, M.; Coin, A.; Sergi, G.; Marini, E. Specific bioelectrical impedance vector reference values for assessing body composition in the Italian elderly. Exp. Gerontol. 2014, 50, 52–56. [Google Scholar] [CrossRef]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef]
- Ferrucci, L.; Penninx, B.W.J.H.; Volpato, S.; Harris, T.B.; Bandeen-Roche, K.; Balfour, J.; Leveille, S.G.; Fried, L.P.; Guralnik, J.M. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J. Am. Geriatr. Soc. 2002, 50, 1947–1954. [Google Scholar] [CrossRef] [Green Version]
- Genton, L.; Herrmann, F.R.; Spörri, A.; Graf, C.E. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clin. Nutr. 2017, 37, 1066–1069. [Google Scholar] [CrossRef]
- Matias, C.N.; Nunes, C.L.; Francisco, S.; Tomeleri, C.M.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. Phase angle predicts physical function in older adults. Arch. Gerontol. Geriatr. 2020, 90, 104151. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Marques, E.A.; Baptista, F.; Santos, R.; Vale, S.; Santos, D.A.; Silva, A.M.; Mota, J.; Sardinha, L.B. Normative functional fitness standards and trends of portuguese older adults: Cross-cultural comparisons. J. Aging Phys. Act. 2014, 22, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Sardinha, L.B.; Santos, D.A.; Marques, E.A.; Mota, J. Criterion-referenced fitness standards for predicting physical independence into later life. Exp. Gerontol. 2015, 61, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.A.N.; Jorge, A.J.L.; de Andrade Martins, W.; Cardoso, G.P.; dos Santos, M.M.S.; Rosa, M.L.G.; Lima, G.A.B.; de Moraes, R.Q.; da Cruz Filho, R.A. Phase angle measured by electrical bioimpedance and global cardiovascular risk in older adults. Geriatr. Gerontol. Int. 2018, 18, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.D.; Souza, G.C.; Clausell, N.; Biolo, A. Prognostic role of phase angle in hospitalized patients with acute decompensated heart failure. Clin. Nutr. 2016, 35, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall | G1 (n = 8) | G2 (n = 16) | G3 (n = 15) | G4 (n = 7) | Comparisons |
---|---|---|---|---|---|---|
Age (years) | 71.1 ± 6.4 | 73.0 ± 8.1 | 70.5 ± 6.4 | 71.3± 5.9 | 70.0 ± 6.4 | - |
Weight (kg) | 71.9 ± 12.8 | 56.0 ± 4.6 a,b,c | 66.9 ± 5.6 b,c | 76.5 ± 5.9 c | 91.7 ± 11.1 | G1 < G2, G3, G4 G2 < G3, G4 G3 < G4 |
Height (cm) | 153.9 ± 4.4 | 154.9 ± 5.4 | 153.7 ± 4.6 | 153.6 ± 4.2 | 154.1 ± 4.2 | - |
BMI (kg/m²) | 30.3 ± 4.9 | 23.3 ± 1.1 a,b,c | 28.3 ± 1.3 b,c | 32.4 ± 1.4 c | 38.5 ± 3.2 | G1 < G2, G3, G4 G2 < G3, G4 G3 < G4 |
Hemodynamic and blood assessment | ||||||
RHR (bpm) | 69.8 ± 10.9 | 70.6 ± 13.6 | 69.8 ± 10.2 | 68.9 ± 11.5 | 71.1 ± 10.3 | - |
SBP (mmHg) | 123.2 ± 14.9 | 125.0 ± 10.9 | 119.4 ± 15.0 | 128.3 ± 15.0 | 118.4 ± 17.5 | - |
DBP (mmHg) | 70.0 ± 10.3 | 72.3 ± 6.3 | 68.0 ± 8.4 | 67.2 ± 10.2 | 78.3 ± 14.5 | - |
Glucose (mg/dL) | 107.6 ± 27.4 | 110.0 ± 17.0 | 110.0 ± 31.1 | 103.3 ± 29.4 | 108.0 ± 26.5 | - |
Triglycerides (mg/dL) | 112.5 ± 48.5 | 73.0 ± 7.8 | 106.5 ± 39.1 | 111.7 ± 53.8 | 158.3 ± 56.0 | - |
TC (mg/dL) | 184.7 ± 29.2 | 159.0 ± 15.4 | 186.5 ± 25.8 | 183.4 ± 31.6 | 201.5 ± 11.1 | - |
HDL (mg/dL) | 59.0 ± 12.2 | 57.7 ± 14.6 | 57.8 ± 12.6 | 62.8 ± 12.4 | 57.5 ± 13.5 | - |
LDL (mg/dL) | 106.9 ± 26.0 | 91.6 ± 44.7 | 107.4 ± 31.4 | 107.8 ± 22.4 | 112.2 ± 9.7 | - |
HBC (A.U.) | −0.07 ± 2.9 | −1.1 ± 4.0 | −0.5 ± 2.5 | 0.02 ± 2.7 | 1.7 ± 2.5 | - |
Functional tests | ||||||
Chair-stand (reps) | 25.4 ± 6.6 | 28.8 ± 9.5 | 26.8 ± 6.2 | 22.8 ± 4.2 | 24.0 ± 6.4 | - |
Time-up-and-go (s) | 4.7 ± 1.0 | 4.4 ± 0.9 | 4.4 ± 0.6 | 4.8 ± 0.8 | 5.7 ± 1.4 | G1 < G4 G2 < G4 |
Arm Curl (reps) | 26.9 ± 5.4 | 28.6 ± 6.4 | 28.7 ± 5.4 | 25.3 ± 4.8 | 24.9 ± 4.8 | - |
6MWT (m) | 612.8 ± 108.3 | 675.4 ± 107.3 | 648.8 ± 80.4 | 542.7 ± 123.1 | 599.4 ± 56.3 | G1 > G3 G2 > G3 |
10-foot line (nr) | −0.02 ± 1.0 | 0.7 ± 0.4 | 0.3 ± 0.6 | −0.8 ± 1.2 | 0.0 ± 0.9 | G1 > G3 G2 > G3 |
SOOL (s) | −0.002 ± 1.0 | 0.7 ± 1.1 | 0.2 ± 1.0 | −0.5 ± 0.7 | −0.4 ± 1.2 | - |
FTC (A.U.) | −0.03 ± 3.4 | 2.5 ± 4.0 b | 1.0 ± 2.5 b | −2.5 ± 2.8 | −0.1 ± 2.6 | G1 > G3 G2 > G3 |
Electrical bioimpedance assessment | ||||||
Phase Angle (º) | 5.4 ± 0.6 | 5.2 ± 0.6 | 5.6 ± 0.6 | 5.1 ± 0.5 | 5.4 ± 0.6 | - |
Total Body Water (L) | 30.1 ± 3.1 | 27.4 ± 2.0 c | 29.7 ± 2.5 c | 30.5 ± 2.6 | 33.5 ± 3.4 | G1 < G4 G2 < G4 |
Intracellular Water (L) | 18.4 ± 1.9 | 16.7 ± 1.2 c | 18.2 ± 1.6 | 18.5 ± 1.5 | 20.3 ± 2.2 | G1 < G4 |
Extracellular Water (L) | 11.7 ± 1.2 | 10.7 ± 0.8 b,c | 11.4 ± 1.0 c | 11.9 ± 1.0 | 13.2 ± 1.3 | G1 < G3, G4 G2 < G4 |
Body fat (kg) | 31.1 ± 9.9 | 18.8 ± 2.9 a,b,c | 26.6 ± 4.4 b,c | 35.3 ± 4.0 c | 46.7 ± 7.1 | G1 < G2, G3, G4 G2 < G3, G4 G3 < G4 |
Visceral fat (cm2) | 161.6 ± 53.3 | 88.8 ± 18.6 a,b,c | 139.4 ± 31.9 b,c | 191.7 ± 26.7 c | 230.8 ± 21.1 | G1 < G2, G3, G4 G2 < G3, G4 G3 < G4 |
Soft lean mass (kg) | 38.5 ± 3.9 | 35.1 ± 2.6 c | 38.0 ± 3.2 c | 39.0 ± 3.3 | 42.8 ± 4.4 | G1 < G4 G2 < G4 |
Fat free mass (kg) | 40.8 ± 4.1 | 37.3 ± 2.7 c | 40.3 ± 3.4 c | 41.2 ± 3.5 | 45.0 ± 4.6 | G1 < G4 G2 < G4 |
Body cell mass (kg) | 26.3 ± 2.7 | 24.0 ± 1.8 c | 26.1 ± 2.3 c | 26.5 ± 2.2 | 29.1 ± 3.1 | G1 < G4 G2 < G4 |
ECW/ICW | 0.6 ± 0.02 | 0.6 ± 0.02 | 0.6 ± 0.02 | 0.6 ± 0.01 | 0.7 ± 0.03 | - |
ECW/BCM | 0.4 ± 0.01 | 0.4 ± 0.01 | 0.4 ± 0.02 | 0.4 ± 0.01 | 0.5 ± 0.02 | - |
ECW/TBW | 0.4 ± 0.008 | 0.4 ± 0.007 | 0.4 ± 0.008 | 0.4 ± 0.005 | 0.4 ± 0.001 | - |
Measures | BMI | Body Fat | Visceral Fat | Phase Angle | Soft Lean Mass | Fat Free Mass | Body Cell Mass |
---|---|---|---|---|---|---|---|
G1 | |||||||
Weight | 0.519 | 0.830 (p = 0.011) | 0.760 (p = 0.029) | 0.478 | 0.820 (p = 0.013) | 0.808 (p = 0.015) | 0.841 (p = 0.009) |
BMI | 0.757 (p = 0.030) | 0.694 | 0.801 (p = 0.017) | 0.098 | 0.075 | 0.178 | |
Body fat | 0.984 (p < 0.001) | 0.621 | 0.362 | 0.342 | 0.405 | ||
Visceral fat | 0.529 | 0.259 | 0.242 | 0.296 | |||
Phase Angle | 0.174 | 0.150 | 0.286 | ||||
Soft lean mass | 0.999 (p < 0.001) | 0.991 (p < 0.001) | |||||
Fat free mass | 0.989 (p < 0.001) | ||||||
G2 | |||||||
Weight | 0.705 (p = 0.002) | 0.796 (p < 0.001) | 0.636 (p = 0.008) | −0.026 | 0.637 (p = 0.008) | 0635 (p = 0.008) | 0.605 (p = 0.013) |
BMI | 0.848 (p < 0.001) | 0.810 (p < 0.001) | −0.367 | 0.079 | 0.082 | 0.04 | |
Body fat | 0.964 (p < 0.001) | −0.295 | 0.041 | 0.039 | 0.007 | ||
Visceral fat | −0.457 | −0.178 | −0.181 | −0.224 | |||
Phase Angle | 0.334 | 0.333 | 0.442 | ||||
Soft lean mass | >0.999 (p < 0.001) | 0.992 (p < 0.001) | |||||
Fat free mass | 0.992 (p < 0.001) | ||||||
G3 | |||||||
Weight | 0.737 (p = 0.002) | 0.819 (p < 0.001) | 0.617 (p = 0.014) | −0.472 | 0.745 (p = 0.001) | 0.745 (p = 0.001) | 0.708 (p = 0.003) |
BMI | 0.744 (p = 0.001) | 0.624 (p = 0.013) | −0.358 | 0.396 | 0.387 | 0.362 | |
Body fat | 0.947 (p < 0.001) | −0.653 (p = 0.008) | 0.228 | 0.228 | 0.177 | ||
Visceral fat | −0.658 (p = 0.008) | −0.053 | −0.054 | −0.100 | |||
Phase Angle | −0.042 | −0.043 | 0.028 | ||||
Soft lean mass | 0.999 (p < 0.001) | 0.996 (p < 0.001) | |||||
Fat free mass | 0.996 (p < 0.001) | ||||||
G4 | |||||||
Weight | 0.904 (p = 0.005) | 0.966 (p < 0.001) | 0.892 (p = 0.007) | 0.086 | 0.923 (p = 0.003) | 0.920 (p = 0.003) | 0.888 (p = 0.008) |
BMI | 0.965 (p < 0.001) | 0.964 (p < 0.001 | −0.044 | 0.702 | 0.693 | 0.661 | |
Body fat | 0.948 (p = 0.001) | −0.105 | 0.794 (p = 0.033) | 0.787 (p = 0.036) | 0.742 | ||
Visceral fat | −0.018 | 0.699 | 0.689 | 0.667 | |||
Phase Angle | 0.363 | 0.366 | 0.460 | ||||
Soft lean mass | >0.999 (p < 0.001) | 0.994 (p < 0.001) | |||||
Fat free mass | |||||||
Overall | |||||||
Weight | 0.945 (p < 0.001) | 0.967 (p < 0.001) | 0.898 (p < 0.001) | −0.053 | 0.803 (p < 0.001) | 0.787 (p < 0.001) | 0.774 (p < 0.001) |
BMI | 0.968 (p < 0.001) | 0.923 (p < 0.001) | −0.061 | 0.636 (p < 0.001) | 0.614 (p < 0.001) | 0.607 (p < 0.001) | |
Body fat | 0.968 (p < 0.001) | −0.141 | 0.624 (p < 0.001) | 0.603 (p < 0.001) | 0.589 (p < 0.001) | ||
Visceral fat | −0.201 | 0.489 (p = 0.001) | 0.467 (p = 0.001) | 0.452 (p = 0.002) | |||
Phase Angle | 0.173 | 0.175 | 0.264 | ||||
Soft lean mass | 0.999 (p < 0.001) | 0.994 (p < 0.001) | |||||
Fat free mass | 0.995 (p < 0.001) |
Measures | PhA (G1) | PhA (G2) | PhA (G3) | PhA (G4) | PhA (Overall) |
---|---|---|---|---|---|
RHR | 0.340 | 0.122 | −0.009 | 0.700 | 0.205 |
SBP | −0.114 | −0.439 | −0.121 | −0.210 | −0.307 (p = 0.038) |
DBP | −0.026 | −0.106 | 0.186 | −0.701 | −0.131 |
Glucose | 1.000 (p = 0.01) | 0.628 | 0.090 | 0.472 | 0.406 |
Triglycerides | −0.908 | −0.648 (p = 0.043) | −0.049 | 0.282 | −0.035 |
TC | −0.105 | −0.010 | −0.494 | −0.848 | −0.115 |
HDL | 0.267 | 0.182 | −0.558 | −0.772 | −0.226 |
LDL | −1.000 (p = 0.01) | 0.079 | −0.520 | −0.222 | −0.210 |
HBC | 0.283 | −0.082 | −0.261 | −0.222 | −0.058 |
Chair-stand | 0.408 | 0.204 | 0.527 (p = 0.044) | 0.628 | 0.385 (p = 0.008) |
TUG | −0.848 (p = 0.008) | −0.365 | −0.476 | −0.909 (p = 0.005) | −0.544 (p < 0.001) |
Arm Curl | 0.423 | 0.239 | 0.641 (p = 0.010) | 0.943 (p = 0.001) | 0.492 (p = 0.001) |
6MWT | 0.496 | 0.246 | 0.028 | 0.771 (p = 0.042) | 0.314 (p = 0.036) |
10-foot line | −0.485 | 0.257 | 0.229 | 0.633 | 0.266 |
SOOL | −0.436 | 0.490 | 0.370 | 0.700 | 0.311 (p = 0.035) |
FTC | 0.027 | 0.418 | 0.415 | 0.732 | 0.366 (p = 0.012) |
Variables | B | SE of B | R | R2 | Adjusted R2 | F | p | Effect Size F2 |
---|---|---|---|---|---|---|---|---|
SBP | −0.012 | 0.06 | 0.307 | 0.094 | 0.074 | 4.588 | 0.038 * | 0.10 |
Chair-stand | 0.035 | 0.012 | 0.385 | 0.148 | 0.129 | 7.646 | 0.008 * | 0.17 |
TUG | −0.324 | 0.075 | 0.544 | 0.296 | 0.280 | 18.487 | <0.001 * | 0.42 |
Arm Curl | 0.054 | 0.014 | 0.492 | 0.243 | 0.225 | 14.089 | 0.001 * | 0.32 |
6MWT | 0.002 | 0.001 | 0.314 | 0.099 | 0.078 | 4.701 | 0.036 * | 0.11 |
10-foot line | 0.155 | 0.085 | 0.266 | 0.071 | 0.050 | 3.359 | 0.074 | 0.08 |
FTC | 0.064 | 0.025 | 0.366 | 0.134 | 0.115 | 6.822 | 0.012 * | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Leão, C.; Silva, A.F.; Clemente, F.M.; Santamarinha, C.T.; Nobari, H.; Brito, J.P. Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle. Int. J. Environ. Res. Public Health 2022, 19, 6851. https://doi.org/10.3390/ijerph19116851
Oliveira R, Leão C, Silva AF, Clemente FM, Santamarinha CT, Nobari H, Brito JP. Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle. International Journal of Environmental Research and Public Health. 2022; 19(11):6851. https://doi.org/10.3390/ijerph19116851
Chicago/Turabian StyleOliveira, Rafael, César Leão, Ana Filipa Silva, Filipe Manuel Clemente, Carlos Tadeu Santamarinha, Hadi Nobari, and João Paulo Brito. 2022. "Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle" International Journal of Environmental Research and Public Health 19, no. 11: 6851. https://doi.org/10.3390/ijerph19116851
APA StyleOliveira, R., Leão, C., Silva, A. F., Clemente, F. M., Santamarinha, C. T., Nobari, H., & Brito, J. P. (2022). Comparisons between Bioelectrical Impedance Variables, Functional Tests and Blood Markers Based on BMI in Older Women and Their Association with Phase Angle. International Journal of Environmental Research and Public Health, 19(11), 6851. https://doi.org/10.3390/ijerph19116851