How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China
Abstract
:1. Introduction
2. Research Hypotheses
3. Research Methods and Data Sources
3.1. Model
3.2. Variables Selection
3.2.1. Explained Variables
3.2.2. Explanatory Variable
3.2.3. Mediating Variables
3.2.4. Moderator Variable
3.2.5. Control Variables
3.3. Data Sources
4. Empirical Analysis
4.1. Benchmark Regression Results
4.2. Robustness Testing
4.3. Mechanism Analysis
4.3.1. The Impact of City Size on the Cost of Household Travel
4.3.2. Reducing the Impact of City Size the Cost of Household Travel
4.4. Further Analysis
4.4.1. Heterogeneity Analysis
4.4.2. Nonlinear Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, J. Main Data of the Seventh National Population Census. China Stat. 2021, 5, 4–5. (In Chinese) [Google Scholar]
- Xu, H.; Jiao, M. City size, industrial structure and urbanization quality—A case study of the Yangtze River Delta urban agglomeration in China. Land Use Pol. 2021, 111, 105735. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhang, J.; Wu, L.X. City scale, productivity advantage, and resource allocation. Manag. World 2019, 35, 77–89. [Google Scholar]
- Pan, L.; Mukhopadhaya, P.; Li, J. The changing texture of the city-size wage differential in Chinese cities–Effects of skill and identity. China Econ. Rev. 2019, 53, 191–210. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E. Understanding China’s urban pollution dynamics. J. Econ. Lit. 2013, 51, 731–772. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Hu, S.; Frazier, A.E. Multi-order urban development model and sprawl patterns: An analysis in China, 2000–2010. Landsc. Urban Plan. 2017, 167, 386–398. [Google Scholar] [CrossRef]
- Hortas-Rico, M.; Solé-Ollé, A. Does urban sprawl increase the costs of providing local public services? Evidence from Spanish municipalities. Urban Stud. 2010, 47, 1513–1540. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.S. Studies in the Structure of the Urban Economy, 1st ed.; John Hopkins Press: Baltimore, MD, USA, 1972. [Google Scholar]
- Levinson, D.M.; Kumar, A. Density and the journey to work. Growth Chang. 1997, 28, 147–172. [Google Scholar] [CrossRef]
- Yang, J.; French, S.; Holt, J. Measuring the structure of US metropolitan areas, 1970–2000: Spatial statistical metrics and an application to commuting behavior. J. Am. Plan. Assoc. 2012, 78, 197–209. [Google Scholar] [CrossRef]
- Engelfriet, L.; Koomen, E. The impact of urban form on commuting in large Chinese cities. Transportation 2018, 45, 1269–1295. [Google Scholar] [CrossRef] [Green Version]
- Van de Coevering, P.; Schwanen, T. Re-evaluating the impact of urban form on travel patternsin Europe and North-America. Transp. Policy 2006, 13, 229–239. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Noland, R.B. The effect of labour market spatial structure on commuting in England and Wales. J. Econ. Geogr. 2012, 12, 717–737. [Google Scholar] [CrossRef]
- Gordon, P.; Kumar, A.; Richardson, H.W. The influence of metropolitan spatial structure on commuting time. J. Urban Econ. 1989, 26, 138–151. [Google Scholar] [CrossRef]
- Giuliano, G.; Small, K.A. Is the journey to work explained by urban structure? Urban Stud. 1993, 30, 1485–1500. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, A. Growth in commuting distances in French polycentric metropolitan areas: Paris, Lyon and Marseille. Urban Stud. 2005, 42, 1537–1547. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, B.; de Roo, G. The impact of urban growth on commuting patterns in a restructuring city: Evidence from Beijing. Pap. Reg. Sci. 2011, 90, 735–754. [Google Scholar] [CrossRef]
- Gordon, P.; Kumar, A.; Richardson, H.W. Congestion, changing metropolitan structure, and city size in the United States. Int. Reg. Sci. Rev. 1989, 12, 45–56. [Google Scholar] [CrossRef]
- Sun, B.; He, Z.; Zhang, T. Urban spatial structure and commute duration: An empirical study of China. Int. J. Sustain. Transp. 2016, 10, 638–644. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, J.; Dai, D. Urban growth pattern and commuting efficiency: Empirical evidence from 100 Chinese cities. J. Clean Prod. 2021, 302, 126994. [Google Scholar] [CrossRef]
- Muth, R.E. Cities and Housing: The Spatial Pattern of Urban Residential Land Use, 3rd ed.; The University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Mouratidis, K.; Ettema, D.; Næss, P. Urban form, travel behavior, and travel satisfaction. Transp. Res. Part A Policy Pract. 2019, 129, 306–320. [Google Scholar] [CrossRef]
- Buliung, R.N.; Kanaroglou, P.S. Urban form and household activity-travel behavior. Growth Chang. 2006, 37, 172–199. [Google Scholar] [CrossRef]
- Hu, L.; Yang, J.; Yang, T. Urban spatial structure and travel in China. J. Plan. Lit. 2020, 35, 6–24. [Google Scholar] [CrossRef]
- Ma, K.R.; Banister, D. Urban spatial change and excess commuting. Environ. Plan. A 2007, 39, 630–646. [Google Scholar] [CrossRef]
- Richardson, H.W. Economies and Diseconomies of Agglomeration, 1st ed.; Springer: Berlin, Germany, 1995; pp. 123–155. [Google Scholar]
- Song, B.; Zhao, M. Relevance of city size and traffic congestion and its policy options. City Plan. Rev. 2011, 35, 21–27. [Google Scholar]
- Downs, A. Traffic: Why It’s Getting Worse, What Government Can Do. Available online: http://www.brookings.org/comm/policybriefs/pb128.pdf (accessed on 8 December 2021).
- Stopher, P.R. Reducing road congestion: A reality check. Transp. Policy 2004, 11, 117–131. [Google Scholar] [CrossRef]
- Kang, H.M. The Reciprocity between Urban Infrastructure and Space Evolution. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2012. [Google Scholar]
- Tian, L.; Li, Y.; Yan, Y. Measuring urban sprawl and exploring the role planning plays: A shanghai case study. Land Use Pol. 2017, 67, 426–435. [Google Scholar] [CrossRef]
- Ta, N.; Chai, Y.; Zhang, Y. Understanding job-housing relationship and commuting pattern in Chinese cities: Past, present and future. Transport. Res. Part D Transport. Environ. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Winston, C. The demand for freight transportation: Models and applications. Transp. Res. Part A Policy Pract. 1983, 17, 419–427. [Google Scholar] [CrossRef]
- Ben-Akiva, M.E.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand, 1st ed.; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Cervero, R. Built environments and mode choice: Toward a normative framework. Transport. Res. Part D Transport. Environ. 2002, 7, 265–284. [Google Scholar] [CrossRef]
- Mavoa, S.; Witten, K.; McCreanor, T. GIS based destination accessibility via public transit and walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Wall, G.; McDonald, M. Improving bus service quality and information in Winchester. Transp. Policy 2007, 14, 165–179. [Google Scholar] [CrossRef]
- Redman, L.; Friman, M.; Gärling, T. Quality attributes of public transport that attract car users: A research review. Transp. Policy 2013, 25, 119–127. [Google Scholar] [CrossRef]
- Eriksson, L.; Friman, M.; Gärling, T. Stated reasons for reducing work-commute by car. Transp. Res. Part F Traffic Psychol. Behav. 2008, 11, 427–433. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, L.; Zhao, K. Spatio-Temporal Effects of Multi-Dimensional Urbanization on Carbon Emission Efficiency: Analysis Based on Panel Data of 283 Cities in China. Int. J. Environ. Res. Public Health 2021, 18, 12712. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Z.; Wang, Y. Weighting of toilet assessment scheme in China implementing analytic hierarchy process. J. Environ. Manag. 2021, 283, 111992. [Google Scholar] [CrossRef]
- Liu, S.; Wan, Y.; Zhang, A. Does China’s high-speed rail development lead to regional disparities? A network perspective. Transp. Res. Part A Policy Pract. 2020, 138, 299–321. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Harari, M. Cities in bad shape: Urban geometry in India. Am. Econ. Rev. 2020, 110, 2377–2421. [Google Scholar] [CrossRef]
- Liu, X.Y.; Qin, M.; Li, S.L. Urban Spatial Structure and Labour Income. J. World Econ. 2019, 4, 123–148. [Google Scholar]
- Wang, D.; Lin, T. Built environments, social environments, and activity-travel behavior: A case study of Hong Kong. J. Transp. Geogr. 2013, 31, 286–295. [Google Scholar] [CrossRef]
- Sandow, E. Commuting behaviour in sparsely populated areas: Evidence from northern Sweden. J. Transp. Geogr. 2008, 16, 14–27. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P. Correlation or causality between the built environment and travel behavior? Evidence from Northern California. Transport. Res. Part D Transport. Environ. 2005, 10, 427–444. [Google Scholar] [CrossRef] [Green Version]
- Sandow, E.; Westin, K. Preferences for commuting in sparsely populated areas: The case of Sweden. J. Transp. Land Use 2010, 2, 87–107. [Google Scholar]
- Giménez-Nadal, J.I.; Molina, J.A.; Velilla, J. Two-way commuting: Asymmetries from time use surveys. J. Transp. Geogr. 2021, 95, 103146. [Google Scholar] [CrossRef]
- Kwigizile, V.; Chimba, D.; Sando, T. A cross-nested logit model for trip type-mode choice: An application. Adv. Transp. Stud. 2011, 23, 1–29. [Google Scholar]
- Ewing, R.H. Characteristics, causes, and effects of sprawl: A literature review. In Urban Ecology, 1st ed.; John, M., Eric, S., Eds.; Springer: Boston, MA, USA, 2008; Volume 4, pp. 519–535. [Google Scholar]
- Van Acker, V.; Witlox, F. Commuting trips within tours: How is commuting related to land use? Transportation 2011, 38, 465–486. [Google Scholar] [CrossRef]
- Lin, D.; Allan, A.; Cui, J. The impact of polycentric urban development on commuting behaviour in urban China: Evidence from four sub-centres of Beijing. Habitat Int. 2015, 50, 195–205. [Google Scholar] [CrossRef]
- Sánchez-Soberón, F.; Rovira, J.; Mari, M. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Health Effects of Ozone Pollution. Available online: https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution (accessed on 26 April 2022).
- Rahul, T.M.; Verma, A. The influence of stratification by motor-vehicle ownership on the impact of built environment factors in Indian cities. J. Transp. Geogr. 2017, 58, 40–51. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, Y.; Yang, Y. The relief degree of land surface in China and its correlation with population distribution. Acta Geogr. Sin. 2007, 62, 1073–1082. [Google Scholar]
- Faberman, R.J.; Freedman, M. The urban density premium across establishments. J. Urban Econ. 2016, 93, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Duranton, G.; Turner, M.A. Urban form and driving: Evidence from US cities. J. Urban Econ. 2018, 108, 170–191. [Google Scholar] [CrossRef]
- Colorado School of Mines. Available online: https://payneinstitute.mines.edu/eog/ (accessed on 20 December 2021).
- Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- China Meteorological Data Service Center. Available online: http://101.200.76.197/ (accessed on 1 December 2021).
- Atmospheric Composition Analysis Group. Available online: https://sites.wustl.edu/acag/ (accessed on 8 December 2021).
- Cheng, L.; De Vos, J.; Shi, K. Do residential location effects on travel behavior differ between the elderly and younger adults? Transport. Res. Part D Transport. Environ. 2019, 73, 367–380. [Google Scholar] [CrossRef]
- Dieleman, F.M.; Dijst, M.; Burghouwt, G. Urban form and travel behaviour: Micro-level household attributes and residential context. Urban Stud. 2002, 39, 507–527. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, P. The impact of land-use mix on residents’ travel energy consumption: New evidence from Beijing. Transport. Res. Part D Transport. Environ. 2017, 57, 224–236. [Google Scholar] [CrossRef]
- Spinney, J.L.; Millward, H. Weather impacts on leisure activities in Halifax, Nova Scotia. Int. J. Biometeorol. 2011, 55, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Aaheim, H.A.; Hauge, K.E. Impacts of Climate Change on Travel Habits: A National Assessment Based on Individual Choices. Available online: https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/191992 (accessed on 1 December 2021).
- Böcker, L.; Dijst, M.; Prillwitz, J. Impact of everyday weather on individual daily travel behaviours in perspective: A literature review. Transp. Rev. 2013, 33, 71–91. [Google Scholar] [CrossRef]
- Connolly, M. Here comes the rain again: Weather and the intertemporal substitution of leisure. J. Labor Econ. 2008, 26, 73–100. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liao, H. Weather, travel mode choice, and impacts on subway ridership in Beijing. Transp. Res. Part A Policy Pract. 2020, 135, 264–279. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Z.; Liu, Y. The impact of urban characteristics and residents’ income on commuting in China. Transport. Res. Part D Transport. Environ. 2017, 57, 474–483. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.; Liu, X. Near “real-time” estimation of excess commuting from open-source data: Evidence from China’s megacities. J. Transp. Geogr. 2021, 91, 102929. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.; Wang, J. Tracking job and housing dynamics with smartcard data. Proc. Natl. Acad. Sci. USA 2018, 115, 12710–12715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhou, J.; Zhang, T. Quantifying and visualizing jobs-housing balance with big data: A case study of Shanghai. Cities 2017, 66, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, R.; McNally, M.G.; Uddin, Y.S. Impact of working from home on activity-travel behavior during the COVID-19 Pandemic: An aggregate structural analysis. Transp. Res. Part A Policy Pract. 2022, 159, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Budnitz, H.; Tranos, E.; Chapman, L. Telecommuting and other trips: An English case study. J. Transp. Geogr. 2020, 85, 102713. [Google Scholar] [CrossRef]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
ln (travel cost) | 5.326 | 2.245 | 0.000 | 13.044 |
size | 1.551 | 2.121 | 0.003 | 10 |
age | 41.456 | 13.298 | 7.600 | 90 |
education | 5.013 | 1.212 | 0.500 | 9 |
minors | 0.457 | 0.498 | 0 | 1 |
family size | 2.903 | 0.856 | 1.000 | 12.000 |
sector | 0.542 | 0.498 | 0 | 1 |
wage | 8.399 | 3.751 | 0 | 13.178 |
operational | 0.916 | 2.843 | 0 | 13.304 |
property | 1.318 | 2.875 | 0 | 14.390 |
transfer | 7.324 | 2.675 | 0 | 13.221 |
density | 7.563 | 0.878 | 4.007 | 9.470 |
price | 1.551 | 0.473 | 0.811 | 2.890 |
government | 0.137 | 0.298 | 0.015 | 8.911 |
PM 2.5 | 3.741 | 0.445 | 1.896 | 4.531 |
subway | 0.352 | 0.721 | 0 | 2.773 |
spatial form | 0.735 | 0.165 | 0.167 | 1 |
river | 0.249 | 0.432 | 0 | 1 |
terrain | 0.500 | 0.676 | 0.001 | 3.814 |
temperature | 2.641 | 0.324 | 1.443 | 3.163 |
precipitation | 9.043 | 0.429 | 7.554 | 10.091 |
latitude | 34.359 | 6.350 | 21.270 | 47.728 |
longitude | 116.206 | 6.551 | 98.290 | 131.141 |
disbeijing | 6.266 | 1.899 | 0 | 7.740 |
disshanghai | 6.535 | 1.443 | 0 | 7.740 |
congestion | 3.064 | 1.371 | 0.182 | 5.752 |
distance | 2.492 | 0.776 | 0.088 | 4.073 |
road | 2.278 | 0.506 | 0.642 | 4.302 |
bus | 2.159 | 0.659 | 0.278 | 4.714 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | ln (Travel Cost) | ln (Travel Cost) | ln (Travel Cost) | ln (Travel Cost) |
size | 0.2332 *** | 0.1566 *** | 0.2160 *** | 0.1517 *** |
(0.0262) | (0.0237) | (0.0313) | (0.0297) | |
age | −0.0129 *** | −0.0144 *** | ||
(0.0010) | (0.0010) | |||
education | 0.3313 *** | 0.3596 *** | ||
(0.0080) | (0.0080) | |||
minors | 0.2669 *** | 0.2951 *** | ||
(0.0212) | (0.0216) | |||
family size | 0.0704 *** | 0.0507 *** | ||
(0.0113) | (0.0111) | |||
sector | 0.1907 *** | 0.2330 *** | ||
(0.0208) | (0.0204) | |||
wage | 0.0743 *** | 0.0774 *** | ||
(0.0034) | (0.0034) | |||
operational | 0.0522 *** | 0.0538 *** | ||
(0.0031) | (0.0032) | |||
property | 0.0512 *** | 0.0706 *** | ||
(0.0039) | (0.0033) | |||
transfer | 0.0924 *** | 0.1049 *** | ||
(0.0047) | (0.0049) | |||
density | 0.0179 | 0.0150 | ||
(0.0256) | (0.0235) | |||
price | 0.6356 *** | 0.6897 *** | ||
(0.1974) | (0.1770) | |||
government | −0.0946 *** | −0.0669 ** | ||
(0.0350) | (0.0299) | |||
PM 2.5 | −0.0265 | −0.1120 | ||
(0.1174) | (0.1060) | |||
subway | −0.1099 | −0.1342 ** | ||
(0.0755) | (0.0671) | |||
spatial form | −0.2218 | −0.1018 | ||
(0.1392) | (0.1176) | |||
river | 0.0949 * | 0.0733 | ||
(0.0548) | (0.0485) | |||
terrain | −0.0124 | −0.0260 | ||
(0.0774) | (0.0737) | |||
temperature | 0.6965 * | 0.7915 ** | ||
(0.4064) | (0.3711) | |||
precipitation | −0.6754 *** | −0.6031 *** | ||
(0.1459) | (0.1324) | |||
latitude | −0.0498 | −0.0319 | ||
(0.0350) | (0.0321) | |||
longitude | 0.0140 | 0.0248 * | ||
(0.0157) | (0.0140) | |||
disbeijing | 0.0480 | 0.0370 | ||
(0.1640) | (0.1499) | |||
disshanghai | 0.0014 | −0.0671 | ||
(0.1127) | (0.1069) | |||
Constant | 4.5344 *** | 1.2714 *** | 8.6278 ** | 3.4744 |
(0.1646) | (0.1634) | (3.4657) | (3.2234) | |
Observations | 100,869 | 100,869 | 100,869 | 100,869 |
R-squared | 0.1134 | 0.2483 | 0.1178 | 0.2269 |
province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | ln (Travel Cost2) | ln (Travel Cost) | ln (Travel Cost) | ln (Travel Cost) |
size | 0.2173 *** | 0.5351 *** | ||
(0.0374) | (0.0832) | |||
lnarea | 0.1167 *** | |||
(0.0286) | ||||
lnpop | 0.1268 *** | |||
(0.0308) | ||||
Constant | −2.1333 | 2.3398 | 2.0618 | −8.7187 * |
(3.8525) | (3.1787) | (3.2002) | (5.1021) | |
Observations | 100,869 | 100,869 | 100,869 | 50,564 |
R-squared | 0.2414 | 0.2272 | 0.2265 | 0.2174 |
Control variables | Yes | Yes | Yes | Yes |
province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Size | ln (Travel Cost) | Size | ln (Travel Cost) |
IV1 | 0.1458 *** | |||
(0.0124) | ||||
IV2 | −0.2053 *** | |||
(0.0140) | ||||
size | 0.3388 *** | 0.1631 *** | ||
(0.1032) | (0.0538) | |||
Constant | 3.8147 | 2.7608 | 6.3539 ** | 3.4308 |
(3.0929) | (3.2149) | (2.6947) | (3.2289) | |
Observations | 100,869 | 100,869 | 100,869 | 100,869 |
R-squared | 0.9327 | 0.2246 | 0.9497 | 0.2269 |
Control variables | Yes | Yes | Yes | Yes |
province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
F value | 137.68 *** | 214.06 *** |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Distance | ln (Travel Cost) | Congestion | ln (Travel Cost) |
size | 0.3769 *** | 0.0745 ** | 0.5999 *** | 0.1018 *** |
(0.0387) | (0.0292) | (0.0620) | (0.0343) | |
distance | 0.2049 *** | |||
(0.0449) | ||||
congestion | 0.0832 ** | |||
(0.0398) | ||||
Constant | 8.9240 *** | 1.6461 | 11.9890 *** | 2.4771 |
(2.8901) | (3.0981) | (3.4877) | (3.2143) | |
Observations | 100,869 | 100,869 | 100,869 | 100,869 |
R-squared | 0.7668 | 0.2280 | 0.8954 | 0.2271 |
Control variables | Yes | Yes | Yes | Yes |
province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | ln (Travel Cost) | ln (Travel Cost) | ln (Travel Cost) | ln (Travel Cost) |
size | 0.1549 *** | 0.3563 *** | 0.1173 *** | 0.5064 *** |
(0.0291) | (0.0576) | (0.0293) | (0.0609) | |
size × road | −0.0841 *** | |||
(0.0196) | ||||
size × bus | −0.1605 *** | |||
(0.0216) | ||||
road | 0.1688 *** | 0.2825 *** | ||
(0.0502) | (0.0593) | |||
bus | 0.1833 *** | 0.3494 *** | ||
(0.0370) | (0.0443) | |||
Constant | 2.0729 | 1.5602 | 1.8637 | −0.5581 |
(3.1408) | (3.0808) | (3.0499) | (2.9566) | |
Observations | 100,869 | 100,869 | 100,869 | 100,869 |
R-squared | 0.2539 | 0.2545 | 0.2542 | 0.2564 |
Control variables | Yes | Yes | Yes | Yes |
province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Sub-Provincial Cities | Ordinary Cities | |
---|---|---|
Variables | ln (Travel Cost) | ln (Travel Cost) |
size | 0.0823 * | 0.5299 *** |
(0.0471) | (0.0674) | |
Constant | 40.0663 *** | −6.2588 ** |
(10.8097) | (3.1745) | |
Observations | 37,940 | 62,929 |
R-squared | 0.2523 | 0.2015 |
Control variables | Yes | Yes |
province FE | Yes | Yes |
Year FE | Yes | Yes |
(1) | (2) | |
---|---|---|
Variables | ln (Travel Cost) | ln (Travel Cost) |
size | 0.3557 *** | 0.2374 *** |
(0.0367) | (0.0446) | |
size2 | −0.0234 *** | −0.0136 *** |
(0.0047) | (0.0047) | |
Constant | 4.5938 *** | 2.9307 |
(0.1556) | (3.1868) | |
Observations | 100,869 | 100,869 |
R-squared | 0.1149 | 0.2273 |
Control variables | No | Yes |
province FE | Yes | Yes |
Year FE | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, T. How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China. Int. J. Environ. Res. Public Health 2022, 19, 6890. https://doi.org/10.3390/ijerph19116890
Li Z, Li T. How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China. International Journal of Environmental Research and Public Health. 2022; 19(11):6890. https://doi.org/10.3390/ijerph19116890
Chicago/Turabian StyleLi, Zhentao, and Tianzi Li. 2022. "How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China" International Journal of Environmental Research and Public Health 19, no. 11: 6890. https://doi.org/10.3390/ijerph19116890
APA StyleLi, Z., & Li, T. (2022). How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China. International Journal of Environmental Research and Public Health, 19(11), 6890. https://doi.org/10.3390/ijerph19116890