Long-Term Skin Temperature Changes after Breast Cancer Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niwińska, A.; Gałecki, J. Current indications and methods of postoperative radiation therapy—Repetition before the exam. Oncol. Clin. Pract. 2016, 12, 18–24. [Google Scholar]
- Censabella, S.; Claes, S.; Orlandini, M.; Braekers, R.; Thijs, H.; Bulens, P. Retrospective study of radiotherapy-induced skin reactions in breast cancer patients: Reduced incidence of moist desquamation with a hydroactive colloid gel versus dexpanthenol. Eur. J. Oncol. Nurs. 2014, 18, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Hauer-Jensen, M. The radiotherapeutic injury—A complex ‘wound’. Radiother. Oncol. 2002, 63, 129–145. [Google Scholar] [CrossRef]
- Sanchis, A.G.; González, L.B.; Carazo, J.L.S.; Partearroyo, J.C.G.; Martínez, A.E.; González, A.V.; Torrecilla, J.L.L. Evaluation of acute skin toxicity in breast radiotherapy with a new quantitative approach. Radiother. Oncol. 2017, 122, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Fleta, N.B.; Brian, J.S. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy. Dermatol. Ther. 2016, 6, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Canney, P.A.; Dean, S. Transforming growth factor beta: A promotor of late connective tissue injury following radiotherapy? Br. J. Radiol. 1990, 63, 620–623. [Google Scholar] [CrossRef]
- Bojakowska, U.; Kalinowski, P.; Kowalska, M.E. Epidemiologia i profilaktyka raka piersi = Epidemiology and prophylaxis of breast cancer. J. Educ. Health Sport 2016, 6, 701–710. [Google Scholar] [CrossRef]
- Kopans, D.B. “Early” breast cancer detection using techniques other than mammography. AJR 1984, 143, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Śniadecki, M. Kryteria Rozpoznawania I Wczesne Objawy Chorób Nowotworowych; Via Medica: Gdańsk, Poland, 2015; ISBN 978-83-7599-811-5. [Google Scholar]
- Ellis, L.M.; Fidler, I.J. Angiogenesis and breast cancer metastasis. Lancet 1995, 346, 388. [Google Scholar] [CrossRef]
- Gamagami, P. Atlas of Mammography: New Early Signs in Breast Cancer; Blackwell Science: Oxford, UK, 1986. [Google Scholar]
- Rodenberg, D.A.; Chaet, M.S.; Bass, R.C. Nitric Oxide: An Overview. Am. J. Surg. 1995, 170, 292. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yasuoka, H. Nitric Oxide in Breast Cancer. Clin. Cancer Res. 2006, 12, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbar, M. Hyperthermia of the cancerous breast: Analysis of mechanism. Cancer Lett. 1994, 84, 23. [Google Scholar] [CrossRef]
- Harper, J.L.; Franklin, L.E.; Jenrette, J.M.; Aguero, E.G. Skin Toxicity During Breast Irradiation: Pathophysiology and Management. South. Med. J. 2004, 97, 10. [Google Scholar] [CrossRef] [PubMed]
- Hymes, S.R.; Strom, E.A.; Fife, C. Radiation dermatitis: Clinical presentation. pathophysiology and treatment. J. Am. Acad. Dermatol. 2006, 54, 28–46. [Google Scholar] [CrossRef]
- Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat. Rev. Cancer 2006, 6, 702–713. [Google Scholar] [CrossRef]
- Chmielewski, L.; Kulikowski, L.J.; Nowakowski, A. Obrazowanie Biomedyczne; Akademicka Oficyna Wydawnicza EXIT: Warsaw, Poland, 2003. [Google Scholar]
- Bauer, J.; Hurnik, P.; Zdziarski, J.; Mielczarek, W.; Podbielska, H. Thermovision and its applications in medicine. Acta Bio Opt. Inf. Med. 1997, 3, 121–131. [Google Scholar]
- Podbielska, H.; Skrzek, A. Biomedyczne Zastosowania Termowizji; Oficyna Wydaw: Wrocław, Poland, 2014. [Google Scholar]
- Ring, E.F.J. Progress in the measurement of human body temperature. IEEE Eng. Med. Biol. Mag. 1998, 17, 19–24. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. The Technique of Infrared Imaging in Medicine. In Infrared Imaging; IOP Publishing Ltd.: Bristol, UK, 2015. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef]
- Ammer, K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol. Int. 2008, 18, 125–129. [Google Scholar]
- Ammer, K.; Ring, E.F.J. The Thermal Image in Medicine and Biology; Uhlen-Verlag: Vienna, Austria, 1995. [Google Scholar]
- Cholewka, A.; Kajewska, J.; Kawecki, M.; Sieroń-Stołtny, K.; Stanek, A. How to use thermal imaging in venous insufficiency? J. Therm. Anal. Calorim. 2017, 130, 1317–1326. [Google Scholar] [CrossRef]
- Ng, E.Y.K. A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. 2009, 48, 849–859. [Google Scholar] [CrossRef]
- Amalric, R.; Giraud, D.; Altschuler, C.; Amalric, F.; Spitalier, J.M.; Brandone, H.; Ayme, Y.; Gardiol, A.A. Does infrared thermography truly have a role in present day breast cancer management. Biomed. Thermol. 1982, 107, 269–278. [Google Scholar]
- Jones, C.H. Thermography of the female breast: A five-year study in relation to the detection and prognosis of cancer. In Diagnosis of Breast Disease; Parsons, C.A., Ed.; University Park Press: London, UK, 1983; pp. 214–234. [Google Scholar] [CrossRef]
- Head, J.F.; Lipari, C.A.; Elliot, R.L. Comparison of mammography and breast infrared imaging: Sensitivity, specificity, false negatives, false positives, positive predictive value and negative predictive value. In Proceedings of the First Joint BMES/EMBS Conference, 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, Atlanta, GA, USA, 13–16 October 1999. [Google Scholar] [CrossRef]
- Keyserlingk, J.R.; Ahlgren, P.D. Infrared imaging of the breast; initial reappraisal using high—Resolution digital technology in 100 successive cases of stage 1 and 2 breast cancer. Breast J. 1998, 4, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, C.; Cetingul, M.P. Quantitative visualization and detection of skin cancer using dynamic thermal imaging. J. Vis. Exp. 2011, 51, 2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.S.; Ramachandra, L.; Kumarb, V.; Davea, A.; Mesthac, L.K.; Venkatarmani, K. Evaluation of efficacy of thermographic breast imaging in breast cancer: A pilot study. Breast Dis. 2016, 36, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.Y.K.; Sudharsan, N.M. Numerical computation as a tool to aid thermographic Interpretation. J. Med. Eng. Technol. 2001, 25, 53–60. [Google Scholar] [CrossRef]
- Kennedy, D.; Lee, T.; Seely, D. A comparative review of thermography as a breast screening technique. Integr. Cancer Ther. 2009, 8, 9–16. [Google Scholar] [CrossRef]
- Cholewka, A.; Stanek, A.; Klimas, A.; Sieroń, A.; Drzazga, Z. Thermal imaging application in chronic venous disease: Pilot study. J. Therm. Anal. Calorim. 2013, 115, 1609–1618. [Google Scholar] [CrossRef] [Green Version]
- Head, J.F.; Wang, F.; Elliott, R.L. Breast thermography is a noninvasive prognostic procedure that predicts tumor growth rate in breast cancer patients. Ann. N. Y. Acad. Sci. 1993, 698, 153–158. [Google Scholar] [CrossRef]
- Malkinson, F.; Hanson, W. Radiobiology of the skin. In Physiology, Biochemistry and Molecular Biology of the Skin; Goldsmith, L., Ed.; Oxford University Press: Oxford, UK, 1991; p. 976. [Google Scholar]
- Martin, M.; Lefaix, J.; Delanian, S. TGF-beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 277–290. [Google Scholar] [CrossRef]
- Maillot, O.; Leduc, N.; Atallah, V.; Escarmant, P.; Petit, A.; Belhomme, S.; Sargos, P.; Vinh-Hung, V. Evaluation of Acute Skin Toxicity of Breast Radiotherapy Using Thermography: Results of a Prospective Single-Centre Trial. Cancer Radiothérapie 2018, 22, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cervantes, A.; Kolosovas-Machuca, E.S.; Guevara, E.; Reducindo, M.M.; Hernández, A.B.B.; García, M.R.; González, F.J. An automated method for the evaluation of breast cancer using infrared thermography. EXCLI J. 2018, 17, 989–998. [Google Scholar] [PubMed]
- Carmen, L.; Ambrosone, C.B.; Kropp, S.; Helmbold, I.; Schmezer, P.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Chang-Claude, J. Predictive factors for late normal tissue complications following radiotherapy for breast cancer. Breast Cancer Res. Treat. 2007, 106, 143–150. [Google Scholar] [CrossRef]
- Fox, S.B.; Generali, D.G. Breast tumour angiogenesis. Breast Cancer Res. 2007, 9, 216. [Google Scholar] [CrossRef]
- Plaza, D.; Baic, A.; Lange, B.; Stanek, A.; Ślosarek, K.; Kowalczyk, A.; Cholewka, A. Correlation between Isotherms and Isodoses in Breast Cancer Radiotherapy—First Study. Int. J. Environ. Res. Public Health 2021, 18, 619. [Google Scholar] [CrossRef]
- Karthiga, R.; Narasimhan, K. Medical imaging technique using curvelet transform and machine learning for the automated diagnosis of breast cancer from thermal image. Pattern Anal. Appl. 2021, 24, 981–991. [Google Scholar] [CrossRef]
- Macedo, M.; Santana, M.; Wellington, P.; dos Santos, W.P.; Menezes, R.; Bastos-Filho, C. Breast cancer diagnosis using thermal image analysis: A data-driven approach based on swarm intelligence and supervised learning for optimized feature selection. Appl. Soft Comput. 2021, 109, 107533. [Google Scholar] [CrossRef]
- Sánchez-Cauce, R.; Pérez-Martín, J.; Luque, M. Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data. Comput. Methods Programs Biomed. 2021, 204, 106045. [Google Scholar] [CrossRef]
Groups | Patients | Amount | Age | Comorbidities | Treatment | Other Cancers | Local Recurrence | Radiotherapy Technique |
---|---|---|---|---|---|---|---|---|
Patients after RT | After mastectomy | 24 | 56 ± 9 years | no | adjuvant | no | no | Dynamic -IMRT/VMAT |
After surgery | 24 | 54 ± 5 years | no | adjuvant | no | no | Dynamic -IMRT/VMAT | |
Patients before RT | After mastectomy | 24 | 52 ± 6 years | no | adjuvant | no | no | - |
After surgery | 24 | 59 ± 8 years | no | adjuvant | no | no | - | |
Healthy | Healthy women | 48 | 50 ± 7 years | no | - | - | - | - |
Patients after Surgery | Patients after Mastectomy | ||
---|---|---|---|
Time after radiotherapy | Temperature difference between irradiated and healthy breast (°C) | Time after radiotherapy | Temperature difference between irradiated and healthy breast (°C) |
Up to 1 year | 0.90 ± 0.21 | Up to 1 year | 0.99 ± 0.14 |
Over 1 year up to 5 years | 1.20 ± 0.25 | Over 1 year up to 5 years | 1.68 ± 0.27 |
Over 5 years | 0.30 ± 0.11 | Over 5 years | 0.42 ± 0.13 |
Temperature difference between breasts for healthy women (°C) | Temperature difference between breasts for women after conserving surgery (°C) | Temperature difference between breasts for women after mastectomy (°C) | |
0.21 ± 0.05 | 0.30 ± 0.09 | 0.40 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baic, A.; Plaza, D.; Lange, B.; Michalecki, Ł.; Stanek, A.; Kowalczyk, A.; Ślosarek, K.; Cholewka, A. Long-Term Skin Temperature Changes after Breast Cancer Radiotherapy. Int. J. Environ. Res. Public Health 2022, 19, 6891. https://doi.org/10.3390/ijerph19116891
Baic A, Plaza D, Lange B, Michalecki Ł, Stanek A, Kowalczyk A, Ślosarek K, Cholewka A. Long-Term Skin Temperature Changes after Breast Cancer Radiotherapy. International Journal of Environmental Research and Public Health. 2022; 19(11):6891. https://doi.org/10.3390/ijerph19116891
Chicago/Turabian StyleBaic, Agnieszka, Dominika Plaza, Barbara Lange, Łukasz Michalecki, Agata Stanek, Anna Kowalczyk, Krzysztof Ślosarek, and Armand Cholewka. 2022. "Long-Term Skin Temperature Changes after Breast Cancer Radiotherapy" International Journal of Environmental Research and Public Health 19, no. 11: 6891. https://doi.org/10.3390/ijerph19116891
APA StyleBaic, A., Plaza, D., Lange, B., Michalecki, Ł., Stanek, A., Kowalczyk, A., Ślosarek, K., & Cholewka, A. (2022). Long-Term Skin Temperature Changes after Breast Cancer Radiotherapy. International Journal of Environmental Research and Public Health, 19(11), 6891. https://doi.org/10.3390/ijerph19116891