On the Association between Implant-Supported Prosthesis and Glycemic Control (HbA1c Values)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- ISP delivery
- Diagnosis of diabetes in the medical files
- Consecutive individuals treated between January 2013–December 2018
- Available data
- Lack of data
- Modification in medications for diabetes
- HbA1c values prior to implant placement and one year after ISP delivery
- Early implant failure (up to 1 year after ISP delivery) (EIF)
- Age
- Gender
- Physical status according to American Society of Anesthesiology (ASA) [18]
- Smoking
- Number of implants per individual
- Implant length/diameter
- Implant location
2.2. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics at Individual Level
3.2. Univariate Analysis (Individual Level)
3.3. Multivariate Analysis (Individual Level)
3.4. Demographic and Clinical Characteristics (Implant Level)
3.5. Univariate Analysis (Implant Level, n = 428)
3.6. Multivariate Analysis (Implant Level)
3.7. The Effect of Number of Missing Teeth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/diabetes/data/statistics/statistics-report.html (accessed on 19 April 2022).
- Selvin, E. Measurements of Glycemic Control in Diabetes Mellitus. Available online: https://www.uptodate.com/contents/measurements-of-glycemic-control-in-diabetes-mellitus?search=Selvin%20E.%20Measurements%20of%20glycemic%20control%20in%20diabetes%20mellitus.%20&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (accessed on 19 April 2022).
- van der Bilt, A. Assessment of mastication with implications for oral rehabilitation: A review. J. Oral Rehabil. 2011, 38, 754–780. [Google Scholar] [CrossRef]
- van der Bilt, A.; Olthoff, L.W.; Bosman, F.; Oosterhaven, S.P. The effect of missing postcanine teeth on chewing performance in man. Arch. Oral Biol. 1993, 38, 423–429. [Google Scholar] [CrossRef]
- Aoyama, N.; Fujii, T.; Kida, S.; Nozawa, I.; Taniguchi, K.; Fujiwara, M.; Iwane, T.; Tamaki, K.; Minabe, M. Association of periodontal status, number of teeth, and obesity: A cross-sectional study in Japan. J. Clin. Med. 2021, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Shigli, K.; Hebbal, M. Does prosthodontic rehabilitation change the eating patterns among completely edentulous patients? Gerodontology 2012, 29, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Çeçen, S.; Bulur, Ş.; Türker, K.S. A study on the relationship between number of missing teeth and obesity in Istanbul. J. Turk. Family Physician. 2014, 5, 8–12. [Google Scholar]
- Resnick, H.E.; Valsania, P.; Halter, J.B.; Lin, X. Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults. J. Epidemiol. Community Health. 2000, 54, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Appollonio, I.; Carabellese, C.; Frattola, A.; Trabucchi, M. Influence of dental status on dietary intake and survival in community-dwelling elderly subjects. Age Ageing 1997, 26, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S1–S8. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S286–S291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, M.G.; Lindhe, J. Peri-implant health. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S36. [Google Scholar] [CrossRef] [Green Version]
- Heitz-Mayfield, L.J.A.; Salvi, G.E. Peri-implant mucositis. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S237–S245. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.-L. Peri-implantitis. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S246–S266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant health, peri-implant mucositis and peri-implantitis: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S278–S285. [Google Scholar] [CrossRef] [Green Version]
- Hämmerle, C.H.F.; Tarnow, D. The etiology of hard- and soft-tissue deficiencies at dental implants: A narrative review. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S267–S277. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef]
- Owens, W.D.; Felts, J.A.; Spitznagel, E.L., Jr. ASA physical status classifications: A study of consistency of ratings. Anesthesiology 1978, 49, 239–243. [Google Scholar] [CrossRef]
- Li, S.; Nemeth, I.; Donnelly, L.; Hapca, S.; Zhou, K.; Pearson, E.R. Visit-to-visit HbA1c variability is associated with cardiovascular disease and microvascular complications in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2020, 43, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J.; et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S219–S229. [Google Scholar] [CrossRef]
- Naujokat, H.; Kunzendorf, B.; Wiltfang, J. Dental implants and diabetes mellitus—A systematic review. Int. J. Implant. Dent. 2016, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A.S.T. Successful treatment of early implant failure: A case series. Clin. Implant. Dent. Relat. Res. 2012, 14, 380–387. [Google Scholar] [CrossRef]
- Engfors, I.; Örtorp, A.; Jemt, T. Fixed implant-supported prostheses in elderly patients: A 5-year retrospective study of 133 edentulous patients older than 79 years. Clin. Implant. Dent. Relat. Res. 2004, 6, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, R.S.; Hatch, J.P.; Rugh, J.D.; Sakai, S.; Mobley, C.C.; Saunders, M.J. Dietary intake in edentulous subjects with good and poor-quality complete dentures. J. Prosthet. Dent. 2002, 87, 490–498. [Google Scholar] [CrossRef]
- Gunji, A.; Kimoto, S.; Koide, H.; Murakami, H.; Matsumaru, Y.; Kimoto, K.; Toyoda, M.; Kobayashi, K. Investigation on how renewal of complete dentures impact on dietary and nutrient adequacy in edentulous patients. J. Prosthodont. Res. 2009, 53, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.L.F.; Tan, H.; Peres, K.G.; Peres, M.A. Impact of shortened dental arches on oral health-related quality of life. J. Oral Rehabil. 2016, 43, 190–197. [Google Scholar] [CrossRef]
- Hollis, J.H. The effect of mastication on food intake, satiety and body weight. Physiol. Behav. 2018, 193, 242–245. [Google Scholar] [CrossRef]
- Cassady, B.A.; Hollis, J.H.; Fulford, A.D.; Considine, R.V.; Mattes, R.D. Mastication of almonds: Effects of lipid bioaccessibility, appetite, and hormone response. Am. J. Clin. Nutr. 2009, 89, 794–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, N.; Hu, L.; Li, Z.; Li, R.; Li, C.; Wang, S. Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men. Am. J. Clin. Nutr. 2011, 94, 709–716. [Google Scholar] [CrossRef]
- Zhu, Y.; Hsu, W.H.; Hollis, J.H. Increasing the number of masticatory cycles is associated with reduced appetite and altered postprandial plasma concentrations of gut hormones, insulin and glucose. Br. J. Nutr. 2013, 110, 384–390. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Pascadopoli, M.; Soleo, R.; Di Fonso, F.; Politi, L.; Venugopal, A.; Marya, A.; Butera, A. Management of periodontal disease with adjunctive therapy with ozone and photobiomodulation (PBM): A randomized clinical trial. Photonics 2022, 9, 138. [Google Scholar] [CrossRef]
- Scribante, A.; Butera, A.; Alovisi, M. Customized minimally invasive protocols for the clinical and microbiological management of the oral microbiota. Microorganisms 2022, 10, 675. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Maiorani, C.; Milone, A.; Alovisi, M.; Scribante, A. Paraprobiotics in non-surgical periodontal therapy: Clinical and microbiological aspects in a 6-month follow-up domiciliary protocol for oral hygiene. Microorganisms 2022, 10, 337. [Google Scholar] [CrossRef] [PubMed]
M | SD | N | % | |
---|---|---|---|---|
Age | 67.16 | 11.50 | ||
Age groups | ||||
| 45 | 45.0 | ||
| 42 | 42.0 | ||
| 13 | 13.0 | ||
Gender | ||||
| 60 | 60.0 | ||
| 40 | 40.0 | ||
Total implant number | 4.29 | 2.85 | ||
ASA | ||||
| 56 | 56.0 | ||
| 44 | 44.0 | ||
HbA1c before | 7.10 | 1.09 | ||
HbA1c after | 6.66 | 1.02 | ||
Delta HbA1c | 0.44 | 0.73 | ||
HbA1c improvement | 39 | 39.0 | ||
Implant failure | 12 | 12.0 | ||
Smoking | 6 | 6.0 |
No Significant Improvement (N = 61) | Significant Improvement (N = 39) | Χ2 | p | |||
---|---|---|---|---|---|---|
M ± SD | N (%) | M ± SD | N (%) | |||
Age | 68.10 ± 10.40 | 65.69 ± 13.04 | 0.51 | |||
Age groups | 0.58 | 0.75 | ||||
| 26 (42.6) | 19 (48.7) | ||||
| 26 (42.6) | 16 (41.0) | ||||
| 9 (14.8) | 4 (10.3) | ||||
Gender | 0.34 | 0.56 | ||||
| 38 (62.3) | 22 (56.4) | ||||
| 23 (37.7) | 17 (43.6) | ||||
Total implant count | 4.29 ± 2.83 | 4.28 ± 2.92 | 0.93 | |||
ASA | 0.00 | 0.95 | ||||
| 34 (55.7) | 22 (56.4) | ||||
| 27 (44.3) | 17 (43.6) | ||||
Ha1c before | 6.80 ± 0.95 | 7.57 ± 1.14 | <0.01 | |||
Ha1c after | 6.78 ± 1.05 | 6.47 ± 0.95 | 0.13 | |||
EIF | 7 (11.5) | 5 (12.8) | 0.04 | 0.84 | ||
Smoking | 4 (6.6) | 2 (5.1) | 0.09 | 0.99 |
B | OR | CI | p | ||
---|---|---|---|---|---|
L | H | ||||
Age | −0.02 | 0.98 | 0.94 | 1.02 | 0.37 |
Gender (Male) | 0.33 | 1.39 | 0.52 | 3.74 | 0.51 |
Total implant count | −0.07 | 0.93 | 0.79 | 1.10 | 0.41 |
HbA1c before | 0.67 | 1.96 | 1.22 | 3.14 | <0.01 |
Implant failure | −0.49 | 0.61 | 0.13 | 2.51 | 0.53 |
Smoking | −0.20 | 0.82 | 0.12 | 5.56 | 0.83 |
ASA (3) | −0.09 | 0.91 | 0.32 | 2.62 | 0.87 |
M | SD | N | % | |
---|---|---|---|---|
Age | 66.56 | 10.84 | ||
Age groups | ||||
| 206 | 48.1 | ||
| 175 | 40.9 | ||
| 47 | 11.0 | ||
Gender | ||||
| 277 | 64.7 | ||
| 151 | 35.3 | ||
Implant Length | 11.43 | 1.59 | ||
Implant Width | 3.85 | 0.56 | ||
Ha1c before | 7.24 | 1.23 | ||
Ha1c after | 6.75 | 1.12 | ||
Delta HbA1c | 0.49 | 0.78 | ||
HbA1c improvement | 166 | 38.8 | ||
EIF | 12 | 2.8 | ||
Smoking | 14 | 3.3 | ||
Anterior maxilla | 59 | 13.8 | ||
Premolar maxilla | 86 | 20 | ||
Posterior maxilla | 66 | 15.5 | ||
Anterior mandible | 76 | 17.7 | ||
Premolar mandible | 70 | 16.4 | ||
Posterior mandible | 71 | 16.6 | ||
ASA | ||||
| 241 | 56.2 | ||
| 187 | 43.8 |
No Significant Improvement (N = 262) | Significant Improvement (N = 166) | X2 | p | |||
---|---|---|---|---|---|---|
M ± SD | N (%) | M ± SD | N (%) | |||
Age | 67.11 ± 9.93 | 65.69 ± 12.11 | 0.65 | |||
Age groups | 1.84 | 0.40 | ||||
| 125 (47.5) | 82 (49.4 | ||||
| 104 (39.8) | 70 (42.2) | ||||
| 33 (12.6) | 14 (8.4) | ||||
Gender | 0.07 | 0.79 | ||||
| 171 (65.1) | 106 (63.9) | ||||
| 91 (34.9) | 60 (36.1) | ||||
Implant Length | 11.42 ± 1.54 | 11.46 ± 1.66 | 0.94 | |||
Implant Width | 3.86 ± 0.68 | 3.83 ± 0.30 | 0.22 | |||
Ha1c before | 6.87 ± 1.11 | 7.84 ± 1.17 | <0.01 | |||
Ha1c after | 6.84 ± 1.22 | 6.61 ± 0.94 | 0.45 | |||
Failure | 7 (2.7) | 5 (3.0) | 0.04 | 0.84 | ||
Smoking | 11 (4.2) | 3 (1.8) | 1.85 | 0.17 | ||
Anterior maxilla | 26 (9.9) | 33 (19.9) | 8.29 | <0.01 | ||
Premolar maxilla | 52 (19.9) | 34 (20.4) | 0.20 | 0.89 | ||
Posterior maxilla | 46 (17.5) | 20 (12.0) | 2.41 | 0.12 | ||
Anterior mandible | 53 (20.3) | 23 (13.9) | 2.89 | 0.09 | ||
Premolar mandible | 41 (15.6) | 29 (17.5) | 0.23 | 0.63 | ||
Posterior mandible | 44 (16.8) | 27 (16.3) | 0.03 | 0.87 | ||
ASA | 0.29 | 0.59 | ||||
| 145 (55.2) | 96 (57.8) | ||||
| 117 (44.8) | 70 (42.2) |
B | OR | CI | p | ||
---|---|---|---|---|---|
L | H | ||||
Age | −0.00 | 1.00 | 0.98 | 1.02 | 0.74 |
Gender (Male) | 0.39 | 1.48 | 0.89 | 2.27 | 0.17 |
Implant Length | −0.05 | 0.95 | 0.80 | 1.12 | 0.52 |
Implant Width | −0.31 | 0.73 | 0.49 | 1.10 | 0.11 |
HbA1c before | 0.60 | 1.83 | 1.47 | 2.27 | <0.01 |
ASA (3) | −0.22 | 0.80 | 0.47 | 1.39 | 0.43 |
EIF | 0.15 | 1.16 | 0.28 | 4.82 | 0.85 |
Smoking | −0.51 | 0.60 | 0.14 | 2.53 | 0.45 |
Anterior maxilla | 0.08 | 1.09 | 0.12 | 9.45 | 0.93 |
Premolar maxilla | −0.28 | 0.75 | 0.09 | 6.48 | 0.81 |
Posterior maxilla | −0.63 | 0.53 | 0.06 | 4.82 | 0.59 |
Anterior mandible | −0.96 | 0.38 | 0.04 | 3.34 | 0.40 |
Premolar mandible | −0.30 | 0.74 | 0.09 | 6.38 | 0.83 |
Posterior mandible | −0.41 | 0.66 | 0.07 | 5.87 | 0.72 |
Delta HbA1c Values | Number of Individuals (100) | ≤3 Missing Teeth N (%) (43) | ≥4 Missing Teeth N (%) (38) | Complete Edentulism N (%) (19) |
---|---|---|---|---|
Significant increase (>0.5%) | 5 | 4 (9.3%) | 1 (2.6%) | 0 (0%) |
Increase (0.1–0.49%) | 11 | 1 (2.3%) | 7 (18.4%) | 3 (15.8%) |
No change | 11 | 7 (16.3%) | 3 (7.9%) | 1 (5.3%) |
Decrease (0.1–0.49%) | 34 | 16 (37.2%) | 12 (31.6%) | 6 (31.6%) |
Significant Decrease (>0.5%) | 39 | 15 (34.9%) | 15 (39.5%) | 9 (47.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masri, D.; Masri-Iraqi, H.; Nissan, J.; Nemcovsky, C.; Gillman, L.; Naishlos, S.; Chaushu, L. On the Association between Implant-Supported Prosthesis and Glycemic Control (HbA1c Values). Int. J. Environ. Res. Public Health 2022, 19, 6923. https://doi.org/10.3390/ijerph19116923
Masri D, Masri-Iraqi H, Nissan J, Nemcovsky C, Gillman L, Naishlos S, Chaushu L. On the Association between Implant-Supported Prosthesis and Glycemic Control (HbA1c Values). International Journal of Environmental Research and Public Health. 2022; 19(11):6923. https://doi.org/10.3390/ijerph19116923
Chicago/Turabian StyleMasri, Daya, Hiba Masri-Iraqi, Joseph Nissan, Carlos Nemcovsky, Leon Gillman, Sarit Naishlos, and Liat Chaushu. 2022. "On the Association between Implant-Supported Prosthesis and Glycemic Control (HbA1c Values)" International Journal of Environmental Research and Public Health 19, no. 11: 6923. https://doi.org/10.3390/ijerph19116923
APA StyleMasri, D., Masri-Iraqi, H., Nissan, J., Nemcovsky, C., Gillman, L., Naishlos, S., & Chaushu, L. (2022). On the Association between Implant-Supported Prosthesis and Glycemic Control (HbA1c Values). International Journal of Environmental Research and Public Health, 19(11), 6923. https://doi.org/10.3390/ijerph19116923