The Role of Science-Based Knowledge on the SARS-CoV-2 Virus in Reducing COVID-19-Induced Anxiety among Nurses
Abstract
:1. Introduction
2. Methods
2.1. Research Design and Participants
2.2. Data Collection Instruments
2.2.1. Part 1
2.2.2. Part 2
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worldometer. Coronavirus Update (Live): 10,087,553 Cases and 501,428 Deaths from COVID-19 Virus Pandemic—Worldometer, Worldometer. 2020. Available online: https://www.worldometers.info/coronavirus/ (accessed on 28 June 2020).
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kakade, M.; Fuller, C.J.; Fan, B.; Fang, Y.; Kong, J.; Guan, Z.; Wu, P. Depression after exposure to stressful events: Lessons learned from the severe acute respiratory syndrome epidemic. Compr. Psychiatry 2012, 53, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Maunder, R.; Hunter, J.; Vincent, L.; Bennett, J.; Peladeau, N.; Leszcz, M.; Sadavoy, J.; Verhaeghe, L.M.; Steinberg, R.; Mazzulli, T. The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital. Can. Med. Assoc. 2003, 168, 1245–1251. [Google Scholar]
- Barisa, M.T. Mood Disorders: Depression, Mania, and Anxiety. In Clinical Neuropsychology Study Guide and Board Review; Stucky, K.J., Kirkwood, M.W., Donders, J., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 519–543. [Google Scholar]
- Labrague, L.J.; McEnroe Petitte, D.M.; Leocadio, M.C.; Van Bogaert, P.; Tsaras, K. Perceptions of organizational support and its impact on nurses’ job outcomes. Nurs. Forum 2018, 53, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatry 2020, 52, 102066. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Teo, I.; Chay, J.; Cheung, Y.B.; Sung, S.C.; Tewani, K.G.; Yeo, L.F.; Yang, G.M.; Pan, F.T.; Ng, J.Y.; Abu Bakar Aloweni, F.; et al. Healthcare worker stress, anxiety and burnout during the COVID-19 pandemic in Singapore: A 6-month multi-centre prospective study. PLoS ONE 2021, 16, e0258866. [Google Scholar] [CrossRef] [PubMed]
- Pappa, S.; Athanasiou, N.; Sakkas, N.; Patrinos, S.; Sakka, E.; Barmparessou, Z.; Tsikrika, S.; Adraktas, A.; Pataka, A.; Migdalis, I.; et al. From recession to depression? Prevalence and correlates of depression, anxiety, traumatic stress and burnout in healthcare workers during the COVID-19 pandemic in greece: A multi-center, cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 2390. [Google Scholar] [CrossRef]
- Lee, S.A.; Jobe, M.C.; Mathis, A.A.; Gibbons, J.A. Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. J. Anxiety Disord. 2020, 74, 6–9. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Harrison, C.E.; Litvin, P.; Lavian, R.; Waleszonia, S.A.; Miller, K.J. Differentiating the impact of state versus trait anxiety on cognitive functioning of the aging brain. Int. J. Psychol. Res. 2015, 10, 125–179. [Google Scholar]
- Peleg, S.; Nudelman, G.; Shiloh, S. COVID-19 state anxiety of older adults: Effects of defensive information processes. Anxiety Stress Coping 2022, 35, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Lord, H.; Moxham, L.; Middleton, R.; Halcomb, E. Anxiety among Australian nurses during COVID-19. Collegian 2021, 28, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Tanifuji, T.; Aoyama, S.; Shinko, Y.; Mouri, K.; Kim, S.; Satomi-Kobayashi, S.; Shinohara, M.; Kawano, S.; Sora, I. Psychological symptoms and related risk factors among healthcare workers and medical students during the early phase of the COVID-19 pandemic in Japan. Psychiatry Clin. Neurosci. Rep. 2022, 1, e5. [Google Scholar] [CrossRef]
- García-González, J.; Ruqiong, W.; Alarcon-Rodriguez, R.; Requena-Mullor, M.; Ding, C.; Ventura-Miranda, M.I. Analysis of anxiety levels of nursing students because of e-learning during the COVID-19 pandemic. Healthcare 2021, 9, 252. [Google Scholar] [CrossRef]
- Luo, M.; Guo, L.; Yu, M.; Wang, H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public—A systematic review and meta-analysis. Psychiatry Res. 2020, 291, 113190. [Google Scholar] [CrossRef]
- Labrague, L.J.; de los Santos, J.A.A. COVID-19 anxiety among front-line nurses: Predictive role of organisational support, personal resilience and social support. J. Nurs. Manag. 2020, 28, 1653–1661. [Google Scholar] [CrossRef]
- Pappa, S.; Ntella, V.; Giannakas, T.; Giannakoulis, V.G.; Papoutsi, E.; Katsaounou, P. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 88, 901–907. [Google Scholar] [CrossRef]
- Garcia, G.P.; Fracarolli, I.F.; Dos Santos, H.E.; de Oliveira, S.A.; Martins, B.G.; Santin Junior, L.J.; Marziale, M.H.; Rocha, F.L. Depression, Anxiety and Stress in Health Professionals in the COVID-19 Context. Int. J. Environ. Res. Public Health 2022, 19, 4402. [Google Scholar] [CrossRef]
- Taylor, S. COVID Stress Syndrome: Clinical and Nosological Considerations. Curr. Psychiatry Rep. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Delgado-Gallegos, J.L.; Montemayor-Garza, R.d.; Padilla-Rivas, G.R.; Franco-Villareal, H.; Islas, J.F. Prevalence of stress in healthcare professionals during the COVID-19 pandemic in Northeast Mexico: A remote, fast survey evaluation, using an adapted COVID-19 stress scales. Int. J. Environ. Res. Public Health 2020, 17, 7624. [Google Scholar] [CrossRef]
- Hamaideh, S.H.; Al-Modallal, H.; Tanash, M.A.; Hamdan-Mansour3, A. Depression, anxiety and stress among undergraduate students during COVID-19 outbreak and ‘home-quarantine. Nurs. Open 2022, 9, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef] [PubMed]
- Agu, C.F.; Stewart, J.; McFarlane-Stewart, N.; Rae, T. COVID-19 pandemic effects on nursing education: Looking through the lens of a developing country. Int. Nurs. Rev. 2021, 68, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Silver, R.C.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Joo, J.Y.; Liu, M.F. Nurses’ barriers to caring for patients with COVID-19: A qualitative systematic review. Int. Nurs. Rev. 2016, 68, 202–213. [Google Scholar] [CrossRef]
- Mayer, R.E. Rote versus meaningful learning. Theory Into Pract. 2002, 41, 226–232. [Google Scholar] [CrossRef]
- Russ, R.S.; Scherr, R.E.; Hammer, D.; Mikeska, J. Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Sci. Educ. 2008, 92, 499–525. [Google Scholar] [CrossRef] [Green Version]
- Dagan, E.; Dubovi, I.; Levy, M.; Levin, N.Z.; Levy, S.T. Adherence to diabetes care: Knowledge of biochemical processes has a high impact on glycaemic control among adolescents with type 1 diabetes. J. Adv. Nurs. 2019, 75, 2701–2709. [Google Scholar] [CrossRef]
- Dubovi, I.; Levy, S.T.; Levy, M.; Levin, N.Z.; Dagan, E. Glycemic control in adolescents with type 1 diabetes: Are computerized simulations effective learning tools? Pediatric Diabetes 2020, 21, 328–338. [Google Scholar] [CrossRef]
- Todd, A.; Romine, W. The learning loss effect in genetics: What ideas do students retain or lose after instruction? CBE Life Sci. Educ. 2018, 17, ar55. [Google Scholar] [CrossRef]
- Hastie, R. Causal thinking in judgments. In The Wiley Blackwell Handbook of Judgment and Decision Making; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 590–628. [Google Scholar] [CrossRef]
- Piltch-Loeb, R.; Zikmund-Fisher, B.J.; Shaffer, V.A.; Scherer, L.D.; Knaus, M.; Fagerlin, A.; Abramson, D.M.; Scherer, A.M. Cross-Sectional Psychological and Demographic Associations of Zika Knowledge and Conspiracy Beliefs Before and After Local Zika Transmission. Risk Anal. 2019, 39, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Raphael, B.; Barr, M.; Agho, K.; Stevens, G.; Jorm, L. Public health measures during an anticipated influenza pandemic: Factors influencing willingness to comply. Risk Manag. Healthc. Policy 2009, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharon, A.A.; Ruban, A.; Dubovi, I. Knowledge and information credibility evaluation strategies regarding COVID-19: A cross-sectional study. Nurs. Outlook 2020, 69, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Bodas, M.; Peleg, K. Self-Isolation Compliance in the COVID-19 Era Influenced by Compensation: Findings from A Recent Survey in Israel. Health Aff. 2020, 39, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Spielberger, C.D. Manual for the State-Trait Anxiety Inventory (form Y) Self-Evaluation Questionnaire; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Rossi, V.; Pourtois, G. Transient state-dependent fluctuations in anxiety measured using STAI, POMS, PANAS or VAS: A comparative review. Anxiety Stress Coping 2012, 25, 603–645. [Google Scholar] [CrossRef] [Green Version]
- Julian, L.J. Measures of Anxiety. Arthritis Care 2011, 63, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kvaal, K.; Ulstein, I.; Nordhus, I.H.; Engedal, K. The Spielberger State-Trait Anxiety Inventory (STAI): The state scale in detecting mental disorders in geriatric patients. Int. J. Geriatr. Psychiatry 2005, 20, 629–634. [Google Scholar] [CrossRef]
- Bradley, A. Trait and State Anxiety: Assessment, Predictors and Outcomes; Nova Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Spoorthy, M.S. Mental health problems faced by healthcare workers due to the COVID-19 pandemic—A review. Asian J. Psychiatry 2020, 51, 102119. [Google Scholar] [CrossRef]
- Palmieri, L.; Vanacore, N.; Donfrancesco, C.; Lo Noce, C.; Canevelli, M.; Punzo, O.; Raparelli, V.; Pezzotti, P.; Riccardo, F.; Bella, A.; et al. Clinical characteristics of hospitalized individuals dying with COVID-19 by age group in Italy. J. Gerontol. Ser. A 2020, 75, 1796–1800. [Google Scholar] [CrossRef]
- Kagan, M. Social Support Moderates the Relationship between Death Anxiety and Psychological Distress Among Israeli Nurses. Psychol. Rep. 2020, 124, 1502–1514. [Google Scholar] [CrossRef]
- Stathopoulou, H.; Karanikola, M.N.K.; Panagiotopoulou, F.; Papathanassoglou, E.D.E. Anxiety Levels and Related Symptoms in Emergency Nursing Personnel in Greece. J. Emerg. Nurs. 2011, 37, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Rehder, B.; Hastie, R. Causal knowledge and categories: The effects of causal beliefs on categorization, induction, and similarity. J. Exp. Psychol. Gen. 2001, 130, 323–360. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Retamero, R.; Wallin, A.; Dieckmann, A. Does causal knowledge help us be faster and more frugal in our decisions? Mem. Cogn. 2007, 35, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Dubovi, I.; Dagan, E.; Mazbar, O.S.; Nassar, L.; Levy, S.T. Nursing students learning the pharmacology of diabetes mellitus with complexity-based computerized models: A quasi-experimental study. Nurse Educ. Today 2018, 61, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.M.; Swartzman, L.C.; Petrella, R.J.; Gill, D.P.; Minda, J.P. Explaining the causal links between illness management and symptom reduction: Development of an evidence-based patient education strategy. Patient Educ. Couns. 2017, 100, 1169–1176. [Google Scholar] [CrossRef]
- Aharon, A.A.; Dubovi, I.; Ruban, A. Differences in mental health and health-related quality of life between the Israeli and Italian population during a COVID-19 quarantine. Qual. Life Res. 2021, 30, 1675–1684. [Google Scholar] [CrossRef]
- Tran, T.V.; Nguyen, H.C.; Pham, L.V.; Nguyen, M.H.; Nguyen, H.C.; Ha, T.H.; Phan, D.T.; Dao, H.K.; Nguyen, P.B.; Trinh, M.V.; et al. Impacts and interactions of COVID-19 response involvement, health-related behaviours, health literacy on anxiety, depression and health-related quality of life among healthcare workers: A cross-sectional study. BMJ Open 2020, 10, e041394. [Google Scholar] [CrossRef]
- Caballero-Domínguez, C.C.; de Luque-Salcedo, J.G.; Campo-Arias, A. Social capital and psychological distress during Colombian coronavirus disease lockdown. J. Community Psychol. 2021, 49, 691–702. [Google Scholar] [CrossRef]
- Löwe, B.; Wahl, I.; Rose, M.; Spitzer, C.; Glaesmer, H.; Wingenfeld, K.; Schneider, A.; Brähler, E. A 4-item measure of depression and anxiety: Validation and standardization of the Patient Health Questionnaire-4 (PHQ-4) in the general population. J. Affect. Disord. 2010, 122, 86–95. [Google Scholar] [CrossRef]
- Lefante, J.J.; Harmon, G.N.; Ashby, K.M.; Barnard, D.; Webber, L.S. Use of the SF-8 to assess health-related quality of life for a chronically ill, low-income population participating in the Central Louisiana Medication Access Program (CMAP). Qual. Life Res. 2005, 14, 665–673. [Google Scholar] [CrossRef]
Variables | Nurses (n = 162) | Nursing Students (n = 135) | General Public (n = 264) | ||
---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | p | F | |
Age (years) † | 40.7 )11.4) | 22.8 (2.8) | 40.3 (14.8) | <0.0001 | 86.7 |
Education (years) † | 16.6 (2.8) | 13.5 (0.7) | 14.5 (3.0) | <0.0001 | 54.08 |
n(%) | n(%) | p | χ2 | ||
Gender ‡ | <0.0001 | 102.7 | |||
Female | 148 (91) | 129 (88) | 133 (50) | ||
Male | 15 (9) | 16 (12) | 131 (50) | ||
Health status ‡ | <0.0001 | 19.40 | |||
No health issues | 123 (76) | 125 (92) | 196 (74) | ||
Health problems | 39 (24) | 10 (8) | 68 (26) | ||
Family income | =0.003 | 16.14 | |||
Above average | 51 (31) | 33 (24) | 43 (16) | ||
Average | 57 (35) | 51 (38) | 92 (35) | ||
Less than average | 54 (33) | 51 (38) | 129 (49) | ||
Professional level § | |||||
Registered nurses | 162 (100) | ||||
Bachelor degree | 112 (69.1) |
Anxiety Levels Score | |||||||
---|---|---|---|---|---|---|---|
Anxiety Score > 40 † | Anxiety Score > 55 ‡ | ||||||
M (SD) | F | p | η2 | Bonferroni Post Hoc Tests | n (%) | n (%) | |
Registered nurses (n = 162) | 46 (13.0) | 3.12 | 0.009 | 0.03 | Registered nurses > nursing students Registered nurses > general public | 105 (65) | 42 (26) |
Nursing students (n = 135) | 42 (13.0) | 76 (56) | 22 (16) | ||||
General public (n = 264) | 43 (14.0) | 145 (55) | 50 (19) | ||||
Total participants (n = 561) | 44 (13.5) | 325 (58) | 112 (20) |
M (SD) | F | p | η2 | Bonferroni Post Hoc Tests | |
---|---|---|---|---|---|
Community services or outpatient clinics (n = 56) | 45 (14.2) | 2.48 | 0.04 | 0.06 | Internal medicine or gerontology departments > Community services or outpatient clinics Internal medicine or gerontology departments > Neonatal care, delivery, and pediatrics Internal medicine or gerontology departments > Intensive care units, emergency departmentsInternal medicine or gerontology departments > Others |
Internal medicine or geriatric departments (n = 28) | 53 (10.8) | ||||
Neonatal care, delivery and pediatrics (n = 24) | 46 (13.9) | ||||
Intensive care units, emergency departments (n = 23) | 45 (11.2) | ||||
Others (n = 30) | 43 (12.8) | ||||
Total participants (n = 162) | 46 (13.2) |
Variable | Model 1 | Model 2 | Model 3 |
---|---|---|---|
β | Β | β | |
Age | −0.11 | 0.35 | 0.33 |
Education | −0.08 | −0.07 | −0.07 |
Family income level | −0.05 | −0.06 | −0.08 |
Seniority in the nursing field | −0.47 * | −0.45 * | |
Department (internal and geriatric/other departments) | −0.27 *** | −0.26 | |
Science-based knowledge | −0.19 * | ||
Procedural knowledge | 0.07 | ||
R2 | 0.02 | 0.12 | 0.16 |
F for change in R2 | 1.23 | 7.87 ** | 3.30 * |
ΔR2 | 0.02 | 0.10 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubovi, I.; Ruban, A.; Amit Aharon, A. The Role of Science-Based Knowledge on the SARS-CoV-2 Virus in Reducing COVID-19-Induced Anxiety among Nurses. Int. J. Environ. Res. Public Health 2022, 19, 7070. https://doi.org/10.3390/ijerph19127070
Dubovi I, Ruban A, Amit Aharon A. The Role of Science-Based Knowledge on the SARS-CoV-2 Virus in Reducing COVID-19-Induced Anxiety among Nurses. International Journal of Environmental Research and Public Health. 2022; 19(12):7070. https://doi.org/10.3390/ijerph19127070
Chicago/Turabian StyleDubovi, Ilana, Angela Ruban, and Anat Amit Aharon. 2022. "The Role of Science-Based Knowledge on the SARS-CoV-2 Virus in Reducing COVID-19-Induced Anxiety among Nurses" International Journal of Environmental Research and Public Health 19, no. 12: 7070. https://doi.org/10.3390/ijerph19127070
APA StyleDubovi, I., Ruban, A., & Amit Aharon, A. (2022). The Role of Science-Based Knowledge on the SARS-CoV-2 Virus in Reducing COVID-19-Induced Anxiety among Nurses. International Journal of Environmental Research and Public Health, 19(12), 7070. https://doi.org/10.3390/ijerph19127070