Concentration, Propagation and Dilution of Toxic Gases in Underground Excavations under Different Ventilation Modes
Abstract
:1. Introduction
2. Methodology
2.1. Problem Statement
2.2. Initial Concentration of Toxic Gases
2.3. Threshold Limit Values (TLV)
2.4. Analytical Model
2.5. Numerical Modelling
2.6. Grid Sensitivity Analysis
2.7. Field Measurements and Model Validation
3. Results and Discussion
3.1. Toxic Gas Concentration
3.2. 1D Model Results
3.3. Numerical Model Results
3.3.1. Forced Ventilation
3.3.2. Exhaust Ventilation
3.3.3. Mixed Ventilation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mainiero, R.J.; Harris, M.L.; Rowland, J.H. Dangers of toxic fumes from blasting. In Proceedings of the 33rd Annual Conference on Explosives and Blasting Technique, Nashville, TN, USA, 28–31 January 2007; International Society of Explosives Engineers (ISEE): Cleveland, OH, USA, 2007; pp. 1–6. [Google Scholar]
- OSHA Permissible Exposure Limits, OSHA Annotated Table Z-1. Available online: https://www.osha.gov/dsg/annotated-pels/table-z-1.html (accessed on 23 February 2022).
- Huang, R.; Shen, X.; Wang, B.; Liao, X.P. Migration characteristics of CO under forced ventilation after excavation roadway blasting: A case study in a plateau mine. J. Clean. Prod. 2020, 267, 122094. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Wang, F. A Review of Ventilation and Environmental Control of Underground Spaces. Energies 2022, 15, 409. [Google Scholar] [CrossRef]
- Bahrami, D.; Yuan, L.; Rowland, J.H.; Zhou, L.; Thomas, R. Evaluation of postblast re-entry times based on gas monitoring of return air. Min. Metall. Explor. 2019, 36, 513–521. [Google Scholar]
- Torno, S.; Toraño, J.; Ulecia, M.; Allende, C. Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunn. Undergr. Space Technol. 2013, 34, 73–81. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Z.; Zhang, G.; Luo, X.; Zeng, F. Study on CO diffusion law and concentration distribution function under ventilation after blasting in high-altitude tunnel. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104871. [Google Scholar] [CrossRef]
- Torno, S.; Toraño, J. On the prediction of toxic fumes from underground blasting operations and dilution ventilation. Conventional and numerical models. Tunn. Undergr. Space Technol. 2020, 96, 103194. [Google Scholar] [CrossRef]
- Pu, Q.S.; Luo, Y.; Huang, J.H.; Zhu, Y.W.; Hu, S.H.; Pei, C.H.; Zhang, G.; Li, X.P. Simulation study on the effect of forced ventilation in tunnel under single-head drilling and blasting. Shock Vib. 2020, 2020, 8857947. [Google Scholar] [CrossRef]
- Huang, L.; Bohne, R.A.; Bruland, A.; Jakobsen, P.D.; Lohne, J. Environmental impact of drill and blast tunnelling: Life cycle assessment. J. Clean. Prod. 2015, 86, 110–117. [Google Scholar] [CrossRef]
- De Souza, E.M.; Katsabanis, P. On the prediction of blasting toxic fumes and dilution ventilation. Min. Sci. Technol. 1991, 13, 223–235. [Google Scholar] [CrossRef]
- Stewart, C.M. Practical prediction of blast fume clearance and workplace re-entry times in development headings. In Proceedings of the 10th International Mine Ventilation Congress, Sun City, South Africa, 2–8 August 2014. [Google Scholar]
- Agson Gani, P.H.; Widodo, N.P.; Sitorus, T. Study of re-entry time post blasting at ciguha PT ANTAM UBPE pongkor underground gold mine. In Proceedings of the 17th North American Mine Ventilation Symposium (NAMVS 2019), Montreal, QC, Canada, 28 April–1 May 2019. [Google Scholar]
- Sirait, S.H.; Widodo, N.P.; Simanjuntak, M. Study on estimation of re-entry time after blasting in underground mining PT Cibaliung Sumberdaya, Indonesia. In Proceedings of the International Symposium on Earth Science and Technology, Fukuoka, Japan, 3–4 December 2013. [Google Scholar]
- Gillies, A.; Wu, H.; Shires, D. Development of an assessment tool to minimize safe after blast re-entry time to improve the mining cycle. In Proceedings of the Tenth US/North American Mine Ventilation Sm, Anchorage, AK, USA, 16–19 May 2004; pp. 315–324. [Google Scholar]
- Harris, M.L.; Mainiero, R.J. Monitoring and removal of CO in blasting operations. Saf. Sci. 2008, 46, 1393–1405. [Google Scholar] [CrossRef]
- Harris, M.L.; Sapko, M.J.; Mainiero, R.J. Field Studies of CO Migration from Blasting. In Proceedings of the 31st Annual Conference on Explosives and Blasting Technique, Orlando, FL, USA, 6–9 February 2005; International Society of Explosives Engineers: Cleveland, OH, USA, 2005; Volume II, pp. 49–69. [Google Scholar]
- Lawrence, D.L. A Study of Post Blast Generation of Nitrogen Dioxide. In Proceedings of the 22nd Annual Conference on Explosives and Blasting Technique, Orlando, FL, USA, 2–5 February 1995; International Society of Explosives Engineers: Cleveland, OH, USA, 1995; pp. 1–12. [Google Scholar]
- Mayala, L.P.; Veiga, M.M.; Khorzoughi, M.B. Assessment of mine ventilation systems and air pollution impacts on artisanal tanzanite miners at Merelani, Tanzania. J. Clean. Prod. 2016, 116, 118–124. [Google Scholar] [CrossRef]
- Fang, Y.; Yao, Z.; Lei, S. Air flow and gas dispersion in the forced ventilation of a road tunnel during construction. Tunn. Undergr. Space Technol. 2019, 4, 168–179. [Google Scholar] [CrossRef]
- Li, M.; Aminossadati, S.M.; Wu, C. Numerical simulation of air ventilation in super-large underground developments. Tunn. Undergr. Space Technol. 2016, 52, 38–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Lai, J.; Li, Y. Distribution of harmful gas concentration of plateau tunnel under the forced ventilation mode. J. Railw. Sci. Eng. 2016, 13, 1994–2000. [Google Scholar]
- Zou, Z.L.; Hu, X.B.; Yuan, Y.; Chen, J.Z. Monitoring study on CO and dust diffusion in high altitude tunnel under blasting operation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 741, 012111. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, Q.; Guo, C. Migration characteristics of poisonous gas during construction stage in railway tunnels at high altitude areas. J. Cent. South Univ. (Nat. Sci.) 2016, 47, 3948–3957. [Google Scholar]
- Chang, X.K.; Chai, J.R.; Luo, J.P.; Qin, Y.; Xu, Z.G.; Cao, J. Tunnel ventilation during construction and diffusion of hazardous gases studied by numerical simulations. Build. Environ. 2020, 177, 106902. [Google Scholar] [CrossRef]
- Xin, S.; Wang, W.; Zhang, N.; Zhang, C.; Yuan, S.; Li, H.; Yang, W. Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems. J. Build. Eng. 2021, 38, 10222. [Google Scholar] [CrossRef]
- Bubbico, R.; Mazzarotta, B.; Verdone, N. CFD analysis of the dispersion of toxic materials in road tunnels. J. Loss Prevent. Proc. 2014, 28, 47–59. [Google Scholar] [CrossRef]
- Liu, Q.; Nie, W.; Hua, Y.; Peng, H.T.; Ma, H.; Yin, S.; Guo, L.D. Long-duct forced and short-duct exhaust ventilation system in tunnels: Formation and dust control analysis of pressure ventilation air curtain. Process Saf. Environ. Protect. 2019, 132, 367–377. [Google Scholar] [CrossRef]
- Jiang, Z.A.; Wang, Y.P.; Men, L.G. Ventilation control of tunnel drilling dust based on numerical simulation. J. Cent. South Univ. 2021, 28, 1342–1356. [Google Scholar] [CrossRef]
- Agasty, A.; Clausen, E.; Kellner, M.; Langefeld, O. After blast re-entry time for a room and pillar operation. In Proceedings of the Australian Mine Ventilation Conference, Adelaide, Australia, 1–3 July 2013; pp. 179–186. [Google Scholar]
- Roman, W.N.; Guthrie, J.; Ndhlovu, W. Upgrading ventilation systems at Konkola mine, Zambia. In Proceedings of the North American/Ninth US Mine Ventilation Symposium, Kingston, ON, Canada, 8–12 June 2002. [Google Scholar]
- Caliendo, C.; Russo, I.; Genovese, G. Risk Analysis of One-Way Road Tunnel Tube Used for Bi-Directional Traffic under Fire Scenarios. Appl. Sci. 2021, 11, 3198. [Google Scholar] [CrossRef]
- Khattri, S.K.; Log, T.; Kraaijeveld, A. Tunnel Fire Dynamics as a Function of Longitudinal Ventilation Air Oxygen Content. Sustainability 2019, 11, 203. [Google Scholar] [CrossRef] [Green Version]
- Rowland, J.H., III; Mainiero, R.; Hurd, D.A., Jr. Factors Affecting Fumes Production of an Emulsion and ANFO/Emulsion Blends. In Proceedings of the 27th Annual Conference on Explosives and Blasting Technique, Orlando, FL, USA, 28–31 January 2001; pp. 133–141. [Google Scholar]
- Brake, D.J. A review of good practice standards and re-entry procedures after blasting and gas detection generally in underground Hardrock mines. In Proceedings of the 15th North American Mine Ventilation Symposium, Blacksburg, VA, USA, 21–23 June 2015; pp. 20–25. [Google Scholar]
- Taylor, G.I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 1953, 219, 186–203. [Google Scholar]
- Taylor, G.I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. Ser. A 1954, 223, 446–468. [Google Scholar]
- Widodo, N.; Sasaki, K.; Sugai, Y.; Sayoga, R. Turbulent diffusion coefficient in mine airways. In Proceedings of the 12th U.S./North American Mine Ventilation Symposium, Reno, Nevada, 9–12 June 2008. [Google Scholar]
- De Souza, E.; Katsabanis, P.; Roberts, W.; Heidrich, H. Blasting fume prediction and control as a means of reducing ventilation costs. In Proceedings of the 6th US Mine Ventilation Symposium, Salt Lake City, UT, USA, 21–23 June 1993. [Google Scholar]
- Goudar, C.T.; Sonnad, J.R. Explicit Friction Factor Correlation for Turbulent Flow in Smooth Pipes. Ind. Eng. Chem. Res. 2003, 42, 2878–2880. [Google Scholar] [CrossRef]
- Moen, A.; Mauri, L.; Narasimhamurthy, V.D. Comparison of k-ε models in gaseous release and dispersion simulations using the CFD code FLACS. Process Saf. Environ. 2019, 130, 306–316. [Google Scholar] [CrossRef]
Gases | TWA (ppm) | STEL (ppm) |
---|---|---|
CO | 25 | 100 |
NO | 30 | 200 |
NO2 | 3 | 5 |
Guidelines | TWA (ppm) | STEL (ppm) |
---|---|---|
ASM-2 | 25 | 100 |
NOHSC | 30 | 200 |
NIOSH | 35 | 200 |
OSHA PEL | 35 | 200 |
Gases | Molar Mass (g mol −1) | Volume of Gas (m3 kg−1) | Concentration (ppm) |
---|---|---|---|
CO | 28.0 | 0.014 | 1053.74 |
NO | 30.0 | 0.00125 | 100.80 |
NO2 | 46.1 | 0.00065 | 80.54 |
Ventilation Mode | Airflow (m3 s−1) | Re-Entry Time (s) |
---|---|---|
Forced | 30 | 640 |
40 | 480 | |
Exhaust | 30 | 1020 |
40 | 765 | |
Mixed | 30 | 170 |
40 | 155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menéndez, J.; Merlé, N.; Fernández-Oro, J.M.; Galdo, M.; de Prado, L.Á.; Loredo, J.; Bernardo-Sánchez, A. Concentration, Propagation and Dilution of Toxic Gases in Underground Excavations under Different Ventilation Modes. Int. J. Environ. Res. Public Health 2022, 19, 7092. https://doi.org/10.3390/ijerph19127092
Menéndez J, Merlé N, Fernández-Oro JM, Galdo M, de Prado LÁ, Loredo J, Bernardo-Sánchez A. Concentration, Propagation and Dilution of Toxic Gases in Underground Excavations under Different Ventilation Modes. International Journal of Environmental Research and Public Health. 2022; 19(12):7092. https://doi.org/10.3390/ijerph19127092
Chicago/Turabian StyleMenéndez, Javier, Noe Merlé, Jesús Manuel Fernández-Oro, Mónica Galdo, Laura Álvarez de Prado, Jorge Loredo, and Antonio Bernardo-Sánchez. 2022. "Concentration, Propagation and Dilution of Toxic Gases in Underground Excavations under Different Ventilation Modes" International Journal of Environmental Research and Public Health 19, no. 12: 7092. https://doi.org/10.3390/ijerph19127092
APA StyleMenéndez, J., Merlé, N., Fernández-Oro, J. M., Galdo, M., de Prado, L. Á., Loredo, J., & Bernardo-Sánchez, A. (2022). Concentration, Propagation and Dilution of Toxic Gases in Underground Excavations under Different Ventilation Modes. International Journal of Environmental Research and Public Health, 19(12), 7092. https://doi.org/10.3390/ijerph19127092