Diagnostic Accuracy of Platelet-Derived Parameters in Prognostication in Neurosurgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Data
2.3. Clinical Data
2.4. Outcome
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearse, R.M.; Harrison, D.A.; James, P.; Watson, D.; Hinds, C.; Rhodes, A.; Grounds, R.M.; Bennett, E.D. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit. Care 2006, 10, R81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluta, M.P.; Klocek, T.; Krzych, Ł.J. Diagnostic accuracy of red blood cell distribution width in predicting in-hospital mortality in patients undergoing high-risk gastrointestinal surgery. Anaesthesiol. Intensive Ther. 2018, 50, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Pluta, M.P.; Zachura, M.N.; Winiarska, K.; Kalemba, A.; Kapłan, C.; Szczepańska, A.J.; Krzych, J. Usefulness of Selected Peripheral Blood Counts in Predicting Death in Patients with Severe and Critical COVID-19. J. Clin. Med. 2022, 11, 1011. [Google Scholar] [CrossRef]
- Boyd, O.; Jackson, N. How is risk defined in high-risk surgical patientmanagement? Crit. Care 2005, 9, 390–396. [Google Scholar] [CrossRef] [Green Version]
- ASA Physical Status Classification System. American Society of Anesthesiologists. Available online: http://www.asahq.org/quality-and-practice-management/standards-guidelines-and-related-resources/asa-physical-status-classification-system (accessed on 1 February 2022).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustawa z Dnia 5 Grudnia 1996, r. o Zawodzie Lekarza; Rozdz.4 (Tekst Jedn. Dz.U. 1997 nr 28 Poz. 152). Available online: http://isap.sejm.gov.pl/ (accessed on 15 December 2021). (In Polish)
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Kucewicz-Czech, E.; Krzych, Ł.J.; Ligowski, M. Perioperative haemodynamic optimisation in patients undergoing non-cardiac surgery—A position statement from the Cardiac and Thoracic Anaesthesia Section of the Polish Society of Anaesthesiology and Intensive Therapy. Part 1. Anaesthesiol. Intensive Ther. 2017, 49, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Bøtker, H.E.; Hert, S.D.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; Heyndrickx, G.R.; et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar] [PubMed] [Green Version]
- Keshavan, V.H.; Swamy, C.M. Pre-operative laboratory testing: A prospective study on comparison and cost analysis. Indian J. Anaesth. 2016, 60, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Glance, L.G.; Blumberg, N.; Eaton, M.P.; Lustik, S.J.; Osler, T.M.; Wissler, R.; Zollo, R.; Karcz, M.; Feng, C.; Dick, A.W. Preoperative thrombocytopenia and postoperative outcomes after noncardiac surgery. Anesthesiology 2014, 120, 62–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seicean, A.; Schiltz, N.K.; Seicean, S.; Alan, N.; Neuhauser, D.; Weil, R.J. Use and utility of preoperative hemostatic screening and patient history in adult neurosurgical patients. J. Neurosurg. 2012, 116, 1097–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haupenthal, D.; Kuramatsu, J.B.; Volbers, B.; Sembill, J.A.; Mrochen, A.; Balk, S.; Hoelter, P.; Lücking, H.; Engelhorn, T.; Dörfler, A.; et al. Disability-Adjusted Life-Years Associated With Intracerebral Hemorrhage and Secondary Injury. JAMA Netw Open. 2021, 4, e2115859. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noris, P.; Melazzini, F.; Balduini, C.L. New roles for mean platelet volume measurement in the clinical practice? Platelets 2016, 27, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhong, H.; Zhao, Y.; Luo, X.; Gao, W. Role of platelet biomarkers in inflammatory response. Biomark. Res. 2020, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.B.; Elnady, H.M.; Alhewaig, H.K.; Hefny, H.M.; Khodery, A. The mean platelet volume and plateletcrit as predictors of short-term outcome of acute ischemic stroke. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Song, Y.; Xu, J.-J.; Wang, H.-H.; Jiang, L.; Zhao, W.; Zhao, X.-Y.; Chen, J.; Gao, Z.; Qiao, S.-B.; et al. Two-year prognostic value of mean platelet volume in patients with diabetes and stable coronary artery disease undergoing elective percutaneous coronary intervention. Cardiol. J. 2019, 26, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzepliński, R.; Kostyra, K.; Skadorwa, T.; Sługocki, M.; Kostkiewicz, B. Acute platelet response to aneurysmal subarachnoid hemorrhage depends on severity and distribution of bleeding: An observational cohort study. Neurosurg. Rev. 2021, 44, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Bath, P.; Algert, C.; Chapman, N.; Neal, B.; PROGRESS Collaborative Group. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke 2004, 35, 622–626. [Google Scholar] [CrossRef] [Green Version]
- Krashin, E.; Cohen, O.; Pereg, D.; Lishner, M.; Leader, A. Mean platelet volume and risk of thrombotic and bleeding complications in patients with Philadelphia chromosome negative myeloproliferative neoplasms. Blood Coagul. Fibrinolysis 2018, 29, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Valdes, V.; Nardi, M.A.; Hu, L.; Schrem, E.; Berger, J.S. Mean platelet volume reproducibility and association with platelet activity and anti-platelet therapy. Platelets 2014, 25, 188–192. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Age [years] | |
Me (IQR) | 60 (46–68) |
Female gender n (%) | 229 (51%) |
Shoemaker’s criteria | |
Age > 70 years with evidence of limited reserve of one or more organs | 22 (5%) |
History of TIA/stroke | 16 (4%) |
History of heart failure/pulmonary edema/night dyspnea/bilateral auscultatory changes | 16 (4%) |
Respiratory failure | 8 (2%) |
Previous severe cardiorespiratory illness (acute myocardial infraction/stroke/severe COPD | 10 (2%) |
Advanced vascular diseases including aorta | 4 (1%) |
Sepsis | 1 (<1%) |
Shoemaker’s criteria: sum (n, %) | |
No criterion met | 411 (91%) |
1 criterion | 38 (8%) |
2 criteria | 3 (<1%) |
Individual risk (according to SC), n (%) | |
Low | 411 (91%) |
High | 41 (9%) |
ASA-PS (class) | |
Median (IQR) | 2 (2–3) |
ASA-PS (class), n (%) | |
I | 37 (8%) |
II | 215 (47%) |
III | 166 (37%) |
IV | 26 (6%) |
V | 8 (2%) |
Emergency mode (ASA-PS “E”) | 63 (14%) |
Individual risk (according to ASA-PS), n (%) | |
Low | 252 (56%) |
High | 200 (44%) |
Type of surgery | |
Ventricular drainage implantation | 44 (10%) |
Brain tumor, resection | 108 (24%) |
Aneurysm of the cerebral vessels, clipping | 20 (4%) |
Intracranial bleeding, craniotomy | 45 (10%) |
Brain edema, craniotomy | 13 (3%) |
Neuroinfection, brain abscess | 1 (<1%) |
Neuroinfection, ventricular drainage infection | 2 (<1%) |
Spine surgery | 171 (37%) |
Others | 48 (11%) |
Type of emergency surgery | |
Intracranial bleeding, craniotomy | 44 (10%) |
Hydrocephalus, ventricular drainage implantation | 3 (<1%) |
Brain edema, craniotomy | 13 (3%) |
Neuroinfection, abscess brain drainage | 1 (<1%) |
Ventricular drainage infection | 2 (<1%) |
Outcome | |
Death before hospital discharge, n (%) | 13 (3%) |
Cause of death | |
Intracranial bleeding, brain edema | 8 (2%) |
Neuroinfection, septic shock | 3 (<1%) |
Ischemic stroke, cerebral edema | 2 (<1%) |
Parameter | All (n = 452) Me [IQR] | Survival (n = 439) Me [IQR] | Death (n = 13) Me [IQR] | p |
---|---|---|---|---|
WBC [×109 L−1] | 7.5 [6.0–10.1] | 7.4 [5.9–9.7] | 15.6 [10.2–24.9] | <0.001 |
RBC [×1012 L−1] | 4.5 [4.1–4.9] | 4.5 [4.1–4.9] | 3.8 [3.1–4.7] | 0.01 |
HGB [mg dL−1] | 14.0 [12.9–15.1] | 14.0 [12.9–15.1] | 12.0 [9.4–14.7] | 0.01 |
Hematocrit [%] | 41 [38–45] | 41 [38–45] | 37 [29–43] | 0.02 |
MCV [fL] | 92 [88–95] | 92 [88–95] | 95 [89–99] | 0.1 |
MCH [pg] | 31 [30–32] | 31 [30–32] | 31 [29–34] | 0.5 |
MCHC [g dL−1] | 34 [33–34] | 33 [33–34] | 33 [33–34] | 0.5 |
PLT [×106 L−1] | 230 [182–279] | 230 [181–279] | 230 [158–287] | 0.8 |
PCT [%] | 21 [17–26] | 21 [17–26] | 19 [13–25] | 0.2 |
MPV [fL] | 9.2 [8.3–10.1] | 9.3 [8.4–10.1] | 8.3 [7.6–8.8] | <0.001 |
PDW [%] | 14.3 [12.5–16.3] | 14.3 [12.5–16.3] | 14.3 [11.7–15.8] | 0.6 |
Shoemaker’s Criteria: Description | n (%) | PLT [×106 L−1] Me (IQR) | p | MPV [fL] Me (IQR) | p | PCT [%] Me (IQR) | p | PDW [%] Me (IQR) | p |
---|---|---|---|---|---|---|---|---|---|
Previous acute MI/stroke/severe COPD | Yes: 10 (2%) No: 442 (98%) | 193 (168–209) 231 (182–279) | 0.07 | 8.6 (7.9–9.2) 9.2 (8.4–10.1) | 0.1 | 17 (14–22) 21 (17–26) | 0.1 | 15 (13–18) 14 (12–16) | 0.4 |
Age > 70 years with evidence of limited reserve of one or more organs | Yes: 22 (5%) No: 432 (95%) | 213 (151–266) 231 (183–279) | 0.1 | 8.8 (8.2–10.1) 9.2 (8.3–10.1) | 0.5 | 19 (15–23) 21 (18–26) | 0.1 | 14 (12–18) 14 (13–16) | 0.9 |
Advanced vascular diseases including aorta | Yes: 4 (1%) No: 448 (99%) | 274 (213–332) 230 (181–279) | 0.3 | 8.1 (7.7–8.7) 9.2 (8.3–10.1) | 0.04 | 22 (19–26) 21 (17–26) | 0.8 | 13 (11–14) 14 (13–16) | 0.2 |
Sepsis | Yes: 1 (<1%) No: 451 (99%) | 401 (403–403) 230 (181–279) | 0.1 | 7.0 (7.0–7.0) 9.2 (8.3–10.1) | 0.1 | 28 (28–28) 21 (17–26) | 0.3 | 10 (10–10) 14 (13–16) | 0.1 |
Respiratory failure | Yes: 8 (2%) No: 444 (98%) | 248 (217–286) 229 (181–279) | 0.5 | 8.5 (8.1–8.9) 9.2 (8.3–10.1) | 0.1 | 21 (18–26) 21 (17–26) | 1.0 | 14 (13–16) 14 (12–16) | 1.0 |
Parameter | ASA-PS Me (IQR) | p | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
PLT [×106 L−1] | 244 (194–283) | 236 (183–279) | 219 (181–279) | 218 (151–281) | 240 (172–300) | 0.8 |
PCT [%] | 21 (19–27) | 22 (18–26) | 20 (17–25) | 20 (15–24) | 21 (15–26) | 0.3 |
PDW [%] | 14 (12–16) | 14 (13–17) | 14 (12–16) | 14 (13–16) | 15 (14–17) | 0.6 |
MPV [fL] | 9.3 (8.4–10.5) | 9.5 (8.6–10.2) | 9.0 (8.3–9.9) | 8.8 (8.2–9.3) | 8.6 (8.1–9.0) | 0.008 |
Parameter | ASA-PS Me (IQR) | p | Shoemaker’s Criteria Me (IQR) | p | ||
---|---|---|---|---|---|---|
Low Risk (ASA I–II) | High Risk (ASA III–V) | Low Risk | High Risk (≥1 Criterion) | |||
PLT [×106 L−1] | 236 (184–279) | 222 (181–279) | 0.2 | 231 (183–279) | 220 (168–285) | 0.4 |
PCT [%] | 22 (18–26) | 20 (17–25) | 0.1 | 21 (18–26) | 20 (15–23) | 0.1 |
PDW [%] | 14.3 (12.5–16.8) | 14.3 (12.2–15.9) | 0.3 | 14.3 (12.5–16.3) | 14.1 (12.1–16.2) | 0.7 |
MPV [fL] | 9.4 (8.4–10.3) | 9.0 (8.3–9.2) | <0.001 | 9.3 (8.4–10.1) | 8.6 (7.8–9.3) | 0.003 |
Individual Risk | Survival n (%) | Death n (%) | p |
---|---|---|---|
ASA-PS | |||
Low (ASA-PS I–II) (n = 252) | 252 (56%) | - | 0.04 |
High (ASA-PS III–V) (n = 200) | 187 (41%) | 13 (3%) | |
Shoemaker’s criteria | |||
Low (none of the criteria met) (n = 411) | 403 (89%) | 8 (2%) | 0.4 |
High (≥1 criterion met) (n = 41) | 36 (8%) | 5 (1%) | |
MPV 1 | |||
≤9.2 fL (n = 226) | 214 (47%) | 12 (3%) | 0.002 |
>9.2 fL (n = 226) | 225 (50%) | 1 (<1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, M.P.; Dziech, M.; Klocek, T.; Szczepańska, A.J.; Krzych, Ł.J. Diagnostic Accuracy of Platelet-Derived Parameters in Prognostication in Neurosurgery. Int. J. Environ. Res. Public Health 2022, 19, 7115. https://doi.org/10.3390/ijerph19127115
Pluta MP, Dziech M, Klocek T, Szczepańska AJ, Krzych ŁJ. Diagnostic Accuracy of Platelet-Derived Parameters in Prognostication in Neurosurgery. International Journal of Environmental Research and Public Health. 2022; 19(12):7115. https://doi.org/10.3390/ijerph19127115
Chicago/Turabian StylePluta, Michał P., Magdalena Dziech, Tomasz Klocek, Anna J. Szczepańska, and Łukasz J. Krzych. 2022. "Diagnostic Accuracy of Platelet-Derived Parameters in Prognostication in Neurosurgery" International Journal of Environmental Research and Public Health 19, no. 12: 7115. https://doi.org/10.3390/ijerph19127115
APA StylePluta, M. P., Dziech, M., Klocek, T., Szczepańska, A. J., & Krzych, Ł. J. (2022). Diagnostic Accuracy of Platelet-Derived Parameters in Prognostication in Neurosurgery. International Journal of Environmental Research and Public Health, 19(12), 7115. https://doi.org/10.3390/ijerph19127115