The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Data, and Samples Collection
2.2. Immunological Detection of Antibodies
2.3. SARS-CoV-2 RNA Detection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taha, A.E. The Severe Acute Respiratory Syndrome Coronavirus-2 Pandemic: An Overview to Control Human-wildlife and Human-human Interactions. J. Pure Appl. Microbiol. 2020, 14, 1095–1098. [Google Scholar] [CrossRef]
- El-Masry, E.A.; Mohamed, R.A.; Ali, R.I.; Al Mulhim, M.F.; Taha, A.E. Novel coronavirus disease-related knowledge, attitudes, and practices among the residents of Al-Jouf region in Saudi Arabia. J. Infect. Dev. Ctries. 2021, 15, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 2020, 382, 970–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Taha, A.E. Can COVID-19 Be Transmitted Sexually by Semen? J. Pure Appl. Microbiol. 2020, 14, 2287–2293. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Qu, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; et al. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif. 2020, 53, e12923. [Google Scholar] [CrossRef]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Chinese Society of Blood Transfusion. Recommendations on Blood Collection and Supply during the Epidemic of Novel Coronavirus Pneumonia in China (1st ed.). Available online: https://www.csbt.org.cn/plus/view.php?aid=16530 (accessed on 12 December 2021). (In Chinese).
- Chang, L.; Yan, Y.; Wang, L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 2020, 34, 75–80. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [Green Version]
- The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus disease (COVID-19) e China, 2020. China CDC Wkly. 2020, 2, 113. [Google Scholar] [CrossRef]
- Chang, D.; Xu, H.; Rebaza, A.; Sharma, L.; Cruz, C.S.D. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir. Med. 2020, 8, e13. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Pan, Z.; Pan, Y.; Deng, Q.; Chen, L.; Li, J.; Li, Y.; Wang, X. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J. Infect. 2020, 80, e14–e17. [Google Scholar] [CrossRef]
- Zhang, J.F.; Yan, K.; Ye, H.H.; Lin, J.; Zheng, J.J.; Cai, T. SARS-CoV-2 turned positive in a discharged patient with COVID-19 arouses concern regarding the present standard for discharge. Int. J. Infect. Dis. 2020, 97, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Zhang, P. Viral attacks on the blood supply: The impact of severe acute respiratory syndrome in Beijing. Transfusion 2004, 44, 467–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Grant, P.R.; Garson, J.; Tedder, R.S.; Chan, P.; Tam, J.S.; Sung, J.J.Y. Detection of SARS Coronavirus in Plasma by Real-Time RT-PCR. N. Engl. J. Med. 2003, 349, 2468–2469. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.K.-O.; Hui, D.; Chan, K.A.; Hung, E.C.; Chiu, R.W.; Lee, N.; Wu, A.; Chim, S.S.; Tong, Y.K.; Sung, J.J.Y.; et al. Quantitative Analysis and Prognostic Implication of SARS Coronavirus RNA in the Plasma and Serum of Patients with Severe Acute Respiratory Syndrome. Clin. Chem. 2003, 49, 1976–1980. [Google Scholar] [CrossRef]
- Ng, E.K.O.; Ng, P.-C.; Hon, K.L.E.; Cheng, W.T.F.; Hung, E.C.W.; Chan, K.C.A.; Chiu, R.W.K.; Li, A.M.; Poon, L.; Hui, D.; et al. Serial Analysis of the Plasma Concentration of SARS Coronavirus RNA in Pediatric Patients with Severe Acute Respiratory Syndrome. Clin. Chem. 2003, 49, 2085–2088. [Google Scholar] [CrossRef]
- Corman, V.M.; Albarrak, A.M.; Omrani, A.S.; Albarrak, M.M.; Farah, M.E.; Almasri, M.; Muth, D.; Sieberg, A.; Meyer, B.; Assiri, A.M.; et al. Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection. Clin. Infect. Dis. 2016, 62, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Recommendations on SARS and Blood Safety. Available online: https://www.who.int/csr/sars/guidelines/bloodsafety/en/ (accessed on 5 February 2020).
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 28 May 2022).
- Owusu, M.; Sylverken, A.A.; El-Duah, P.; Ayisi-Boateng, N.K.; Yeboah, R.; Adu, E.; Asamoah, J.; Frimpong, M.; Senyo, J.; Acheampong, G.; et al. Low risk of SARS-CoV-2 in blood transfusion. PLoS ONE 2021, 16, e0249069. [Google Scholar] [CrossRef]
- Chiem, C.; Alghamdi, K.; Nguyen, T.; Han, J.H.; Huo, H.; Jackson, D. The Impact of COVID-19 on Blood Transfusion Services: A Systematic Review and Meta-Analysis. Transfus. Med. Hemotherapy 2021, 49, 107–118. [Google Scholar] [CrossRef]
- Miskeen, E.; Yahia, A.I.O.; Eljack, T.B.; Karar, H.K. The Impact of COVID-19 Pandemic on Blood Transfusion Services: A Perspective from Health Professionals and Donors. J. Multidiscip. Healthc. 2021, 14, 3063–3071. [Google Scholar] [CrossRef]
- Narasimhan, M.; Mahimainathan, L.; Noh, J.; Muthukumar, A. Silent SARS-CoV-2 Infections, Waning Immunity, Serology Testing, and COVID-19 Vaccination: A Perspective. Front. Immunol. 2021, 12, 730404. [Google Scholar] [CrossRef]
- Fauziah, N.; Koesoemadinata, R.C.; Andriyoko, B.; Faridah, L.; Riswari, S.F.; Widyatmoko, L.; Prihatni, D.; Ekawardhani, S.; Fibriani, A.; Rachmawati, E.; et al. The performance of point-of-care antibody test for COVID-19 diagnosis in a tertiary hospital in Bandung, Indonesia. J. Infect. Dev. Ctries. 2021, 15, 237–241. [Google Scholar] [CrossRef]
- Pallett, S.; Rayment, M.; Patel, A.; Fitzgerald-Smith, S.A.M.; Denny, S.J.; Charani, E.; Mai, A.L.; Gilmour, K.C.; Hatcher, J.; Scott, C.; et al. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: A prospective multicentre cohort study. Lancet Respir. Med. 2020, 8, 885–894. [Google Scholar] [CrossRef]
- Shields, A.; Faustini, S.E.; Perez-Toledo, M.; Jossi, S.; Aldera, E.; Allen, J.D.; Al-Taei, S.; Backhouse, C.; Bosworth, A.; Dunbar, L.A.; et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax 2020, 75, 1089–1094. [Google Scholar] [CrossRef]
- Long, Q.-X.; Tang, X.-J.; Shi, Q.-L.; Li, Q.; Deng, H.-J.; Yuan, J.; Hu, J.-L.; Xu, W.; Zhang, Y.; Lv, F.-J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Cao, W.-C.; Liu, W.; Zhang, P.-H.; Zhang, F.; Richardus, J.H. Disappearance of Antibodies to SARS-Associated Coronavirus after Recovery. N. Engl. J. Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef]
- Payne, D.C.; Iblan, I.; Rha, B.; Alqasrawi, S.; Haddadin, A.; Al Nsour, M.; Alsanouri, T.; Ali, S.S.; Harcourt, J.; Miao, C.; et al. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 2016, 22, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, X.; Xin, Q.; Pan, Y.; Hu, Y.; Li, J.; Chu, Y.; Feng, Y.; Wang, Q. Neutralizing Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 in Coronavirus Disease 2019 Inpatients and Convalescent Patients. Clin. Infect. Dis. 2020, 71, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Du, R.-H.; Li, B.; Zheng, X.-S.; Yang, X.-L.; Hu, B.; Wang, Y.-Y.; Xiao, G.-F.; Yan, B.; Shi, Z.-L.; et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect. 2020, 9, 386–389. [Google Scholar] [CrossRef] [Green Version]
- American Association of Blood Banks. Update: Impact of 2019 Novel Coronavirus and Blood Safety. Available online: https://www.aabb.org/docs/default-source/default-document-library/regulatory/impact-of-2019-novel-coronavirus-on-blood-donation.pdf-2020 (accessed on 12 December 2021).
- Control Ecfdpa. Outbreak of Acute Respiratory Syndrome Associated with a Novel Coronavirus. Wuhan, China. First Update. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Risk-assessment-pneumonia-Wuhan-China-22-Jan-2020.pdf (accessed on 12 December 2021).
Characteristic | Distribution (n = 300) | Anti-SARS-CoV-2 IgG | Test of Significance | p | Anti-SARS-CoV-2 IgM | Test of Significance | p | |||
---|---|---|---|---|---|---|---|---|---|---|
−ve (n = 273) | +ve (n = 27) | −ve (n = 105) | −ve (n = 195) | |||||||
Age; Years | ≤20 | 12 (4.0%) | 12 (4.4%) | 0(0.0%) | χ2 = 8.273 * | MCp = 0.034 * | 6 (5.7%) | 6(3.1%) | χ2 = 9.275* | 0.026 * |
21–30 | 150 (50.0%) | 132 (48.4%) | 18(66.7%) | 63 (60.0%) | 87(44.6%) | |||||
31–40 | 90 (30.0%) | 81 (29.7%) | 9(33.3%) | 24 (22.9%) | 66(33.8%) | |||||
41–45 | 48 (16.0%) | 48 (17.6%) | 0(0.0%) | 12 (11.4%) | 36(18.5%) | |||||
Gender | Male | 255 (85.0%) | 231 (84.6%) | 24 (88.9%) | χ2 = 0.352 | FEp = 0.778 | 87 (82.9%) | 168(86.2%) | χ2 = 0.582 | 0.446 |
Female | 45 (15.0%) | 42 (15.4%) | 3 (11.1%) | 18 (17.1%) | 27(13.8%) | |||||
Education | Pre-university degree | 36 (12.0%) | 36 (13.2%) | 0 (0.0%) | χ2 = 10.161 * | MCp = 0.013 * | 18 (17.1%) | 18(9.2%) | χ2 = 22.461 * | <0.001 * |
University student | 93 (31.0%) | 84 (30.8%) | 9 (33.3%) | 45 (42.9%) | 48(24.6%) | |||||
Bachelor | 45 (15.0%) | 36 (13.2%) | 9 (33.3%) | 6 (5.7%) | 39(20.0%) | |||||
Postgraduates | 126 (42.0%) | 117 (42.9%) | 9 (33.3%) | 36 (34.3%) | 90(46.2%) | |||||
Occupation | M/AHS | 15 (5.0%) | 12 (4.4%) | 3 (11.1%) | χ2 = 6.482 * | MCp = 0.023 * | 9 (8.6%) | 6(3.1%) | χ2 = 5.492 | 0.064 |
HCW | 36 (12.0%) | 36 (13.2%) | 0 (0.0%) | 15 (14.3%) | 21(10.8%) | |||||
NHCW | 249 (83.0%) | 225 (82.4%) | 24 (88.9%) | 81 (77.1%) | 168(86.2%) | |||||
BMI (kg/m2) | Mean ± SD | 25.33 ± 2.82 | 25.35 ± 2.85 | 25.11 ± 2.47 | t = 0.422 | 0.673 | 25.11 ± 2.42 | 25.45 ± 3.01 | t = 0.972 | 0.332 |
Median (Min.–Max.) | 26 (19–41) | 26 (19–41) | 26 (20–28) | 25 (20–31) | 26 (19–41) | |||||
Travel history | No | 264 (88.0%) | 237 (86.8%) | 27 (100.0%) | χ2 = 4.046 | FEp = 0.056 | 78 (74.3%) | 186 (95.4%) | χ2 = 28.771 * | <0.001 * |
Yes | 36 (12.0%) | 36 (13.2%) | 0 (0.0%) | 27 (25.7%) | 9 (4.6%) | |||||
IgM positivity | No | 105 (35.0%) | 102 (37.4%) | 3 (11.1%) | χ2 = 7.443 * | 0.006 * | ||||
Yes | 195 (65.0%) | 171 (62.6%) | 24 (88.9%) | |||||||
IgG positivity | No | 273 (91.0%) | 102 (97.1%) | 171 (87.7%) | χ2 = 7.443 * | 0.006 * | ||||
Yes | 27 (9.0%) | 3 (2.9%) | 24 (12.3%) | |||||||
Previous experience of COVID-19-like symptoms | No | 243 (81.0%) | 273 (100.0%) | 0 (0.0%) | – | – | 77 (73.3 %) | 166 (85.1%) | χ2 = 5.42 * | 0.021 * |
Yes | 57 (19.0%) | 0 (0.0%) | 27 (100.0%) | 28 (26.7%) | 29 (14.9%) | |||||
Smoking | No | 261 (87.0%) | 237 (86.8%) | 24 (88.9%) | χ2 = 0.094 | FEp = 1.000 | 90 (85.7%) | 171 (87.7%) | χ2 = 0.236 | 0.627 |
Yes | 39 (13.0%) | 36 (13.2%) | 3 (11.1%) | 15 (14.3%) | 24 (12.3%) | |||||
Physical activity | No | 267 (89.0%) | 243 (89.0%) | 24 (88.9%) | χ2 = 0.000 | FEp = 1.000 | 90 (85.7%) | 177 (90.8%) | χ2 = 1.781 | 0.182 |
Yes | 33 (11.0%) | 30 (11.0%) | 3 (11.1%) | 15 (14.3%) | 18 (9.2%) | |||||
Diet/beverages | No | 261 (87.0%) | 237 (86.8%) | 24 (88.9%) | χ2 = 0.094 | FEp = 1.000 | 90 (85.7) | 171 (87.7) | χ2 = 0.236 | 0.627 |
Yes | 39 (13.0%) | 36 (13.2%) | 3 (11.1%) | 15(14.3%) | 24 (12.3) | |||||
Vitamin supplements | No | 270 (90.0%) | 246 (90.1%) | 24 (88.9%) | χ2 = 0.041 | FEp = 0.741 | 90 (85.7%) | 180 (92.3%) | χ2 = 3.297 | 0.069 |
Yes | 30 (10.0%) | 27 (9.9%) | 3 (11.1%) | 15 (14.3%) | 15 (7.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaeen, A.H.; Alduraywish, A.A.; Ghazy, A.A.; El-Metwally, T.H.; Alayyaf, M.; Alrayes, F.H.; Alinad, A.K.M.; Albulayhid, S.B.H.; Aldakhil, A.R.; Taha, A.E. The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study. Int. J. Environ. Res. Public Health 2022, 19, 7119. https://doi.org/10.3390/ijerph19127119
Almaeen AH, Alduraywish AA, Ghazy AA, El-Metwally TH, Alayyaf M, Alrayes FH, Alinad AKM, Albulayhid SBH, Aldakhil AR, Taha AE. The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study. International Journal of Environmental Research and Public Health. 2022; 19(12):7119. https://doi.org/10.3390/ijerph19127119
Chicago/Turabian StyleAlmaeen, Abdulrahman H., Abdulrahman A. Alduraywish, Amany A. Ghazy, Tarek H. El-Metwally, Mohammad Alayyaf, Fahad Hammad Alrayes, Ahmed Khalid M. Alinad, Saqer Bulayhid H. Albulayhid, Abdulrhman Rabea Aldakhil, and Ahmed E. Taha. 2022. "The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study" International Journal of Environmental Research and Public Health 19, no. 12: 7119. https://doi.org/10.3390/ijerph19127119
APA StyleAlmaeen, A. H., Alduraywish, A. A., Ghazy, A. A., El-Metwally, T. H., Alayyaf, M., Alrayes, F. H., Alinad, A. K. M., Albulayhid, S. B. H., Aldakhil, A. R., & Taha, A. E. (2022). The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study. International Journal of Environmental Research and Public Health, 19(12), 7119. https://doi.org/10.3390/ijerph19127119