New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground-Level O3 Observation
2.2. Tropospheric Monitoring Instrument Total O3 Column
2.3. Meteorological Data and Other Covariates
2.4. Date Preprocessing
2.5. Model Development
2.6. Model Evaluation
2.7. O3 Level and Human Exposure Assessments
3. Results
3.1. Missing Data Imputation Results
3.2. Model Configuration Selections
3.3. Model Performance and Grid-Data Generation
3.4. Comparisons with Other Methods
3.5. Sensitivity Analysis of Modeling Variables
3.6. Human Exposure Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; De Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Gerosa, G. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anth. 2018, 6, 28. [Google Scholar] [CrossRef]
- Daniela, N.; Davide, P.; Fabio, V. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Ma, J.; Shen, J.; Zhang, H. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci. Total Environ. 2021, 768, 144796. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Wang, Y.; Zhang, N.; Chu, C. Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020. Environ. Pollut. 2021, 287, 117623. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.; Gong, Z.; Li, H.; Yang, Q.; Wang, Y. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. J. Environ. Sci. 2018, 67, 182–193. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Liu, Y.; Yi, K.; Yang, H.; Xiang, S.; Ma, J.; Tao, S. Spatiotemporal variability and driving factors of ground-level summertime ozone pollution over eastern China. Atmos. Environ. 2021, 265, 118686. [Google Scholar] [CrossRef]
- Anhui Ecological and Environmental Bulletin. 2020. Available online: https://www.ah.gov.cn/zwyw/ztzl/zysthjbhdchtk/zgjz/554006781.html (accessed on 15 December 2021).
- Shi, X.; Zhao, C.; Jiang, J.H.; Wang, C.; Yang, X.; Yuk, L.Y. Spatial Representativeness of PM2.5 Concentrations Obtained Using Observations from Network Stations. J. Geophys. Res. Atmos. 2018, 123, 3145–3158. [Google Scholar] [CrossRef]
- David, L.M.; Ravishankara, A.R.; Brewer, J.F.; Sauvage, B.; Sinha, V. Tropospheric ozone over the Indian subcontinent from 2000 to 2015: Data set and simulation using GEOS-Chem chemical transport model. Atmos. Environ. 2019, 219, 117039. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.; Ying, Q. Regional source apportionment of summertime ozone and its precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model. Atmos. Environ. 2020, 224, 117337. [Google Scholar] [CrossRef]
- Sicard, P.; Crippa, P.; de Marco, A.; Castruccio, S.; Giani, P.; Cuesta, J.; Paoletti, E.; Feng, Z.A. High Spatial Resolution WRF-Chem Model over Asia: Physics and Chemistry Evaluation. Atmos. Environ. 2021, 244, 118004. [Google Scholar] [CrossRef]
- Lu, X.; Ye, X.; Zhou, M.; Zhao, Y.; Weng, H.; Kong, H.; Li, K.; Gao, M.; Zheng, B.; Lin, J.; et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat. Commun. 2021, 12, 5021. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Li, T.; Zhu, L.; Zhang, L. Estimating daily full-coverage near surface O3, CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI and GEOS-FP. ISPRS J. Photogramm. Remote Sens. 2021, 175, 311–325. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Bi, J.; Liu, Y. A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology. Environ. Int. 2022, 158, 106917. [Google Scholar] [CrossRef]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Syst. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B. Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning. Env. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef]
- Ren, X.; Mi, Z.; Georgopoulos, P.G. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environ. Int. 2020, 142, 105827. [Google Scholar] [CrossRef]
- Hu, K.; Rahman, A.; Bhrugubanda, H.; Sivaraman, V. HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation from Fixed and Mobile Sensors. IEEE Sens. J. 2017, 17, 3517–3525. [Google Scholar] [CrossRef]
- Lu, Y.; Giuliano, G.; Habre, R. Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study. Environ. Res. 2020, 195, 110653. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Hongbo, F.; Li, J.; Zhao, Y.; Chen, J. Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. J. Clean. Prod. 2020, 244, 118773. [Google Scholar] [CrossRef]
- Hochreite, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, I.; Song, C.; Lee, K.; Yun, J.; Kim, H.K.; Jeon, M.; Lee, J.; Han, K. Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model. Atmos. Chem. Phys. 2019, 19, 12935–12951. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chiao, H.T.; Abimannan, S.; Huang, Y.P.; Tsai, Y.T.; Lin, K.M. An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Yafouz, A.; Ahmed, A.N.; Zaini, N.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Hybrid deep learning model for ozone concentration prediction: Comprehensive evaluation and comparison with various machine and deep learning algorithms. Eng. Appl. Comput. Fluid Mech. 2021, 15, 902–933. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Center. Available online: http://www.cnemc.cn (accessed on 15 December 2021).
- Technical Regulation for Selection of Ambient Air Quality Monitoring Stations. Available online: http://www.cnemc.cn/jcgf/dqhj/201311/W020181008687878171473.pdf (accessed on 16 December 2021).
- Technical Regulation for Operation and Quality Control of Ambient Air Quality Continuous Automated Monitoring System for SO2, NO2, O3 and CO. Available online: http://www.cnemc.cn/jcgf/dqhj/202009/W020200922483880824988.pdf (accessed on 16 December 2021).
- Di, Q.; Rowland, S.; Koutrakis, P.; Schwartz, J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. J. Air Waste Manag. Assoc. 2017, 67, 39–52. [Google Scholar] [CrossRef]
- Liu, X.; Lou, S.; Chen, Y.; Liu, Y.; Wang, J.; Shan, Y.; Huang, S.; Du, H. Satiotemporal distribution of ground-level ozone in mid-east China based on OMI observations. Acta Sci. Circumst. 2016, 36, 8. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; Mcmullan, K.; Forster, H.; Vries, J.D.; Otter, G.; Claas, J.; Eskes, H.J.; Haan, J.; Kleipool, Q. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- TROPOMI Level 2 Ozone Total Column Products Version 02. Available online: https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/sentinel-5-precursor-level-2-ozone (accessed on 16 December 2021).
- S5P/TROPOMI Total Ozone Algorithm Theoretical Basis Document. Available online: https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Total-Ozone (accessed on 16 December 2021).
- ERA5 Hourly Data on Single Levels from 1979 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 16 December 2021).
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Qu, Y.; Voulgarakis, A.; Wang, T.; Kasoar, M.; Wells, C.; Yuan, C.; Varma, S.; Mansfield, L. A study of the effect of aerosols on surface ozone through meteorology feedbacks over China. Atmos. Chem. Phys. 2021, 21, 5705–5718. [Google Scholar] [CrossRef]
- Ma, M.; Yao, G.; Guo, J.; Bai, K. Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential factors. J. Environ. Manag. 2021, 288, 112368. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 2: The effects of emission changes and implications for multi-pollutant control. Atmos. Chem. Phys. 2020, 20, 6323–6337. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Dan, M.S.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef] [PubMed]
- MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mod13a1v006/ (accessed on 16 December 2021).
- Open Street Map. Available online: https://www.openstreetmap.org (accessed on 16 December 2021).
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). Available online: http://pubs.usgs.gov/of/2011/107 (accessed on 16 December 2021).
- Gridded Population of the World, Version 4. Available online: https://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count (accessed on 16 December 2021).
- Chen, X.; He, Z.; Sun, L. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 2018, 98, 73–84. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Sun, L. A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic Data Imputation. Transp. Res. Part C Emerg. Technol. 2020, 117, 102673. [Google Scholar] [CrossRef]
- Ekinci, E.; Omurca, S.I.; Özbay, B. Comparative assessment of modeling deep learning networks for modeling ground-level ozone concentrations of pandemic lock-down period. Ecol. Modell. 2021, 457, 109676. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
- Xue, T.; Zheng, Y.; Geng, G.; Xiao, Q.; Meng, X.; Wang, M.; Li, X.; Wu, N.; Zhang, Q.; Zhu, T. Estimating Spatiotemporal Variation in Ambient Ozone Exposure during 2013–2017 Using a Data-Fusion Model. Env. Sci. Technol. 2020, 54, 14877–14888. [Google Scholar] [CrossRef]
- Ayturan, Y.A.; Ayturan, Z.C.; Altun, H.O.; Kongoli, C.; Tuncez, F.D.; Dursun, S.; Ozturk, A. Short-term prediction of pm2.5 pollution with deep learning methods. Glob. Nest. J. 2020, 22, 126–131. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv 2015. [Google Scholar] [CrossRef]
- Girish, C.; Ferat, S. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar]
- Valput, D.; Navares, R.; Aznarte, J. Forecasting hourly NO2 concentrations by ensembling neural networks and mesoscale models. Neural. Comput. Appl. 2020, 32, 9331–9342. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Zhang, M.; Di, B. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cheng, X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. Int. J. Appl. Earth Obs. 2021, 101, 102356. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Dong, G.; Yang, B.; Liu, Y.; Lu, T.; Yu, P.; Guo, Y.; Li, S. Improving satellite-based estimation of surface ozone across China during 2008–2019 using iterative random forest model and high-resolution grid meteorological data. Sustain. Cities Soc. 2021, 69, 102807. [Google Scholar] [CrossRef]
Model | Sample-Based CV | City-Based CV | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | MAPE | R2 | RMSE | MAE | MAPE | |
RF | 0.89 | 14.33 | 10.41 | 13.17 | 0.79 | 19.17 | 14.76 | 19.45 |
DNN | 0.88 | 15.28 | 11.48 | 14.52 | 0.79 | 19.64 | 14.83 | 19.80 |
GRU | 0.91 | 13.28 | 9.64 | 11.80 | 0.80 | 19.36 | 14.45 | 18.61 |
LSTM | 0.92 | 12.80 | 9.34 | 11.45 | 0.82 | 18.65 | 14.10 | 18.14 |
CNN | 0.90 | 13.72 | 10.26 | 12.96 | 0.80 | 19.70 | 14.92 | 19.93 |
AR-LSTM | 0.94 | 10.64 | 7.52 | 8.82 | 0.85 | 17.25 | 13.07 | 16.90 |
Region | Spring | Summer | Fall | Winter | Annual |
---|---|---|---|---|---|
Shandong | 124.23 ± 33.14 | 142.31 ± 36.48 | 101.99 ± 41.02 | 66.73 ± 19.14 | 110.03 ± 43.46 |
Anhui | 116.58 ± 30.77 | 109.03 ± 23.31 | 102.24 ± 36.32 | 67.12 ± 19.44 | 99.69 ± 33.70 |
Jiangsu | 122.91 ± 32.43 | 118.40 ± 29.46 | 102.05 ± 36.33 | 67.83 ± 19.55 | 103.87 ± 36.72 |
Shanghai | 119.45 ± 32.50 | 107.32 ± 39.28 | 97.71 ± 34.38 | 70.80 ± 21.41 | 99.81 ± 36.94 |
Zhejiang | 113.29 ± 33.06 | 95.53 ± 20.64 | 100.30 ± 35.72 | 66.53 ± 23.12 | 94.76 ± 33.32 |
Eastern China | 120.06 ± 27.98 | 118.55 ± 19.10 | 101.33 ± 33.93 | 67.31 ± 18.36 | 102.89 ± 32.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Mu, X.; Jiang, P.; Huo, Y.; Zhu, L.; Zhu, Z.; Wu, Y. New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China. Int. J. Environ. Res. Public Health 2022, 19, 7186. https://doi.org/10.3390/ijerph19127186
Wang S, Mu X, Jiang P, Huo Y, Zhu L, Zhu Z, Wu Y. New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China. International Journal of Environmental Research and Public Health. 2022; 19(12):7186. https://doi.org/10.3390/ijerph19127186
Chicago/Turabian StyleWang, Sichen, Xi Mu, Peng Jiang, Yanfeng Huo, Li Zhu, Zhiqiang Zhu, and Yanlan Wu. 2022. "New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China" International Journal of Environmental Research and Public Health 19, no. 12: 7186. https://doi.org/10.3390/ijerph19127186
APA StyleWang, S., Mu, X., Jiang, P., Huo, Y., Zhu, L., Zhu, Z., & Wu, Y. (2022). New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China. International Journal of Environmental Research and Public Health, 19(12), 7186. https://doi.org/10.3390/ijerph19127186