The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Justification of Propositions
2.3. Data
2.4. Method
3. Results
3.1. Analysis of the Interaction between the Conditions of the MLP
3.2. Analysis Cluster
3.3. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntafalias, A.; Papadopoulos, G.; Papadopoulos, P.; Huovila, A. A Comprehensive Methodology for Assesing the Impact of Smart City Interventions: Evidence from Espoo Transformation Process. Smart Cities 2022, 5, 6. [Google Scholar] [CrossRef]
- Braga, I.F.B.; Ferreira, F.A.F.; Ferreira, J.J.M.; Correia, R.J.C.; Pereira, L.F.; Falcao, P.F. A DEMATEL analysis of smart city determinants. Technol. Soc. 2021, 66, 101687. [Google Scholar] [CrossRef]
- Ibrahim, M.; El-Zaart, A.; Adams, C. Smart sustainable cities roadmap: Readiness for transformation towards urban sustainability. Sustain. Cities Soc. 2018, 37, 530–540. [Google Scholar] [CrossRef]
- Nguyen, N.U.P.; Moehrle, M.G. Technological Drivers of Urban Innovation: A T-DNA Analysis Based on US Patent Data. Sustainability 2019, 11, 6966. [Google Scholar] [CrossRef]
- Peponi, A.; Morgado, P. Smart and Regenerative Urban Growth: A literature Network Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2463. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- D’Amico, A.; Bergonzoni, G.; Pini, A.; Currà, E. BIM for Healthy Buildings: An Integrated Approach of Architectural Design based on IAQ Prediction. Sustainability 2020, 12, 10417. [Google Scholar] [CrossRef]
- Corburn, J. Urban Place and Health Equity: Critical Issuess and Practices. Int. J. Environ. Res. Public Health 2017, 14, 117. [Google Scholar] [CrossRef]
- Alderton, A.; Nitvimol, K.; Davern, M.; Higgs, C.; Correia, J.; Butterworth, I.; Badland, H. Building Capacity in Monitoring Urban Livability in Bangkok: Critical Success Factors and Reflections from a Multi-Sectoral, International Partnership. Int. J. Environ. Res. Public Health 2021, 18, 7732. [Google Scholar] [CrossRef]
- Li, Y.; Miao, L.; Chen, Y.; Hu, Y. Exploration of Sustainable Urban Transportation Development in China though the Forecast of Private Vehicle Ownership. Sustainability 2019, 11, 4259. [Google Scholar] [CrossRef]
- Duggal, A.S.; Singh, R.; Gehlot, A.; Gupta, L.R.; Akram, S.V.; Prakash, C.; Singh, S.; Kumar, R. Infrastructure, mobility and safety 4.0: Modernization in road transportation. Technol. Soc. 2021, 67, 101791. [Google Scholar] [CrossRef]
- Moeinaddini, M.; Asadi-Shekari, Z.; Shah, M.Z. An urban mobility index for evaluating and reducing private motorized trips. Measurement 2015, 63, 30–40. [Google Scholar] [CrossRef]
- Medina-Molina, C.; Rey-Tienda, M.S. The transition towards the implementation of sustainable mobility. Looking for generalization of sustainable mobility in different territories by the application of QCA. Sustain. Technol. Entrep. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Labee, P.; Rasouli, S.; Liao, F. The implications of Mobility as a Service for urban emissions. Transp. Res. Part D 2022, 102, 103128. [Google Scholar] [CrossRef]
- Tennøy, A.; Gundersen, F.; Øksenholt, K.V. Urban structure and sustainable modes’ competitiveness in small and medium-sized Norwegian cities. Transp. Res. Part D 2022, 105, 103225. [Google Scholar] [CrossRef]
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015. 2015. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 23 April 2022).
- Xu, X.; Gao, J.; Zhang, Z.; Fu, J. An Assessment of Chinese Pathways to Implement the UN Sustainable Development Gola-11 (SDG-11): A Case Study of the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2019, 16, 2288. [Google Scholar] [CrossRef]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S. Self-sustainable smart cities: Socio-spatial society using participative bottom-up and cognitive top-down approach. Cities 2021, 118, 103370. [Google Scholar] [CrossRef]
- Hölscher, K.; Frantzeskaki, N. Perspective on urban transformation reasearch: Transformation in, of, and by cities. Urban Transform. 2021, 3, 1–14. [Google Scholar] [CrossRef]
- Graaf, L.; Werland, S.; Lah, O.; Martin, E.; Mejia, A.; Muñoz Barriga, M.R.; Nguyen, H.T.T.; Teko, E.; Shrestha, S. The Other Side of the (Policy) Coin: Analyzing Exnovation Policies for the Urban Mobility Transition in Eight Cities around the Globe. Sustainability 2021, 13, 9045. [Google Scholar] [CrossRef]
- Kim, J.H. Smart city trends: A focus on 5 countries and 15 companies. Cities 2022, 123, 103551. [Google Scholar] [CrossRef]
- Buttazzoni, A.; Veenhof, M.; Minaker, L. Smart City and High-Tech Urban Interventions Targeting Human Health. An Equity-Focused Systemtic Review. Int. J. Environ. Res. Public Health 2020, 17, 2325. [Google Scholar] [CrossRef]
- Irvine, S.; Bai, X. Positive inertia and proactive influencing towards sustainability: Systems analysis of a frontrunner city. Urban Transform. 2019, 1, 1–27. [Google Scholar] [CrossRef]
- Schägg, E.; Becker, S.L.; Pradhan, P. Thwarted visions of change: Power and demographics in repair cafes and urban sustainability transitions. Urban Transform. 2022, 4, 1–19. [Google Scholar] [CrossRef]
- Son, M.; Tan, K.H.; Wang, J.; Shen, Z. Modeling and evaluating economic and ecological operation efficiency of smart city pilots. Cities 2022, 124, 103575. [Google Scholar]
- So, J.; An, H.; Lee, C. Defining Smart Mobility Service Levels via Text Mining. Sustainability 2020, 12, 9293. [Google Scholar] [CrossRef]
- Noori, N.; de Jong, M.; Hoppe, T. Towards an Integrated Framework to Measure Smart City Readiness: The Case of Iranian Cities. Smart Cities 2020, 3, 35. [Google Scholar] [CrossRef]
- Yigitcantar, T.; Degirmenci, K.; Butler, L.; Desouza, K.C. What are the key factors affecting smart city tarnsformation readiness? Evidence from Australia cities. Cities 2022, 120, 103434. [Google Scholar] [CrossRef]
- Fang, Y.; Shan, Z. How to Promote a Smart City Effectively? An Evaluation Model and Efficiency Analysis of Smart Cities in China. Sustainability 2022, 14, 6512. [Google Scholar] [CrossRef]
- Mashau, N.L.; Kroeze, J.H.; Howard, G.R. An Integrated Conceptual Framework to Assess Small and Rural Municipalities’ Readiness for Smart City Implementation: A Systematic Literature Review. In Innovative Technologies and Learning. ICITL 2021. Lecture Notes in Computer Science; Huang, Y.M., Lai, C.F., Rocha, T., Eds.; Springer: Cham, Germany, 2021; Volume 13117. [Google Scholar]
- Nagpal, R.; Mehrotra, D.; Sehgal, R.; Srivasava, G.; Lin, J.C.-H. Overcoming Smart City Barriers Using Multi-Modal Interpretive Structural Modelling. J. Signal Process. Syst. 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H. Driving Sustainable Innovations in New Ventures: A Study Based on the fsQCA Approach. Sustainability 2022, 14, 5738. [Google Scholar] [CrossRef]
- Pinhate, T.B.; Parsons, M.; Fisher, K.; Crease, R.P.; Baars, R. A crack in the automobility regime? Exploring the transition of Sao Paulo to sustainable urban mobility. Cities 2020, 107, 102914. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Jin, X. Element Matching and Configuration Path of Corporate Social Responsibility Performance. Sustainability 2022, 14, 6614. [Google Scholar] [CrossRef]
- Medina-Molina, C.; Pérez-Macías, N.; Gismera-Tierno, L. The multi-level perspective and micromobility services. J. Innov. Knowl. 2022, 7, 100183. [Google Scholar] [CrossRef]
- Ruhrort, L. Reassessing the Role of Shared Mobility Services in a Transport Transition: Can They Contribute the Rise of an Alternative Socio-Technical Regime of Mobility? Sustainability 2020, 12, 8253. [Google Scholar] [CrossRef]
- Polita, F.S.; Madureira, L. Transition Pathways of Agroecological Innovation in Portugal’s Douro Wine Region: A Multi-Level Perspective. Land 2021, 10, 322. [Google Scholar] [CrossRef]
- Finn, V. A qualitative assessment of QCA: Method stretching in large-N studies and temporality. Qual. Quant. 2022. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Palacios-Marqués, D.; Simón-Moya, V. Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technol. Forecast. Soc. Chang. 2021, 169, 120843. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 2021, 162, 120343. [Google Scholar] [CrossRef]
- Wu, Z.; Shao, Q.; Su, Y.; Zhang, D. A socio-technical transition path for new energy vehicles in China: A multi-level perspective. Technol. Forecast. Soc. Chang. 2021, 172, 121007. [Google Scholar] [CrossRef]
- Zhang, F.; Chung, C.K.L.; Lu, T.; Wu, F. The role of the local government in China`s urban sustainability transition: A case study of Wuxi`s solar development. Cities 2021, 117, 103924. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; de Haan, H. Transitions: Two steps from theory to policy. Futures 2009, 41, 593–606. [Google Scholar] [CrossRef]
- Jain, M.; Rohracher, H. Assessing transformative change of infraestructure in urban area developments. Cities 2022, 124, 103573. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Vähäkari, N.; Lauttamäki, V.; Tapio, P.; Ahvenainen, M.; Assmuth, T.; Lyytimäki, J.; Vehmas, J. The future in sustainability transitions—Interlinkages between the multi-level perspective and futures studies. Futures 2020, 123, 102597. [Google Scholar] [CrossRef]
- Peris, J.; Bosch, M. The paradox of planning for transformation: The case of the integrated sustainable urban development startegy in Valencia (Spain). Urban Transform. 2020, 2, 2–23. [Google Scholar] [CrossRef]
- Peris-Blanes, J.; Segura-Calero, S.; Sarabia, N.; Ribó-Pérez, D. The role of place in shaping urban transformative capacity. The case of València (Spain). Environ. Innov. Soc. Transit. 2022, 42, 124–137. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Inac, H.; Oztemel, E. An Assessment Framework for the Transformation of Mobility 4.0 in Smart Cities. Systems 2022, 10, 1. [Google Scholar] [CrossRef]
- Romao, J.; Kourtit, K.; Neuts, B.; Nijkamp, P. The smart city as a common place for tourists and residents: A structural analysis of the determinants of urban attractiveness. Cities 2018, 78, 67–75. [Google Scholar] [CrossRef]
- Sassen, S.; Kourtit, K. A Post-Corona Perspective for Smart Cities: ‘Should I Stay or Should I Go?’. Sustainability 2021, 13, 9988. [Google Scholar] [CrossRef]
- Kourtit, K.; Nijkamp, P.; Wahlström, M.H. How to make cities the home of people—A ‘soul and body’ analysis of urban attractiveness. Land Use Policy 2021, 111, 104734. [Google Scholar] [CrossRef]
- Kakderi, C.; Oikonomaki, E.; Papadaki, I. Smart and Resilient Urban Futures for Sustainability in the Post COVID-19 Era: A Review of Policy Responses on Urban Mobility. Sustainability 2021, 13, 6486. [Google Scholar] [CrossRef]
- Kabisch, S.; Finnveden, G.; Kratochvil, P.; Sendi, R.; Smagacz-Poziemska, M.; Matos, R.; Bylund, J. New urban transitions towards sustainability: Addressing SDG challenges (research and implementation tasks and topics from the perspective of the scientific advisory board (SAB) of the joint programming initiative (JPI) urban Europe). Sustainability 2019, 11, 2242. [Google Scholar] [CrossRef]
- De Marco, A.; Mangano, G. Evolutionary trends in smart city initiatives. Sustain. Futures 2021, 3, 100052. [Google Scholar] [CrossRef]
- Milloning, A.; Rudloff, C.; Richter, G.; Lorenz, F.; Pier, S. Fair mobility budgets: A concept for archieving climate neutrality and transport equity. Transp. Res. Part D 2022, 103, 103165. [Google Scholar] [CrossRef]
- Akande, A.; Cabral, P.; Gomes, P.; Casteleyn, S. The Lisbon ranking for smart sustainable citues in Europe. Sustain. Cities Soc. 2019, 44, 475–487. [Google Scholar] [CrossRef]
- Oliver Wyman Forum 2022. Available online: https://www.oliverwymanforum.com/mobility/urban-mobility-readiness-index/rankings.html (accessed on 21 March 2022).
- Allen, M.; Piecyk, M.; Piotrowska, F.; McLeod, T.; Cherrett, K.; Ghali, M.; Austwick. M. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp. Res. Part D 2018, 61, 325–338. [Google Scholar] [CrossRef]
- Lempp, M.; Siegfried, P. Characterization of the Automotive Industry. In Automotive Disruption and the Urban Mobility Revolution. Business Guides on the Go; Springer: Cham, Germany, 2022. [Google Scholar]
- Marti, L.; Puertas, R. Sustainable energy development analysis: Energy Trilemma. Sustain. Technol. Entrep. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Tick, A.; Cranfield, D.J.; Venter, I.M.; Renaud, K.V.; Blignaut, R.J. Comparing Three Countries’ Higher Education Students’ Cyber Related Perceptions and Behaviours during COVID-19. Electronics 2021, 10, 2865. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Evaluation of city sustainability using multi-criteria decision-making considering interaction among criteria in Liaoning province China. Sustain. Cities Soc. 2020, 59, 102211. [Google Scholar] [CrossRef]
- Kutty, A.A.; Kucuman, M.; Abdella, G.M.; Bulank, M.E.; Cuat, N.C. Sustainability Performance of European Smart Cities: A Novel DEA Approach with Double Frontiers. Sustain. Cities Soc. 2022, 81, 103777. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.; Hwang, H. Which Institutional Conditions Lead to a Successful Local Energy Transition? Applying Fuzzy-Set Qualitative Comparative Analysis to Solar PV Cases in South Korea. Energies 2020, 13, 3696. [Google Scholar] [CrossRef]
- Castelló-Sirvent, F. A Fuzzy-Set Qualitative Comparative Analysis of Publications on the Fuzzy Sets Theory. Mathematics 2022, 10, 1322. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, Z.; Tei, Y. How to Evaluate the Green and High-Quality Development Path? An FsQCA Approach on the China Pilot Free Trade Zone. Int. J. Environ. Res. Public Health 2022, 19, 547. [Google Scholar] [CrossRef]
- Mozas-Moral, A.; Bernal-Jurado, E.; Fernández-Uclés, D.; Medina-Virual, J. Innovation as the Backbone of Sustainable Development Goals. Sustainability 2020, 12, 4747. [Google Scholar] [CrossRef]
- Arias-Oliva, M.; Pelegrín-Borondo, J.; Almahameed, A.A.; de Andrés-Sánchez, J. Ethical Attitudes toward COVID-19 Passports: Evidences from Spain. Int. J. Environ. Res. Public Health 2021, 18, 13098. [Google Scholar] [CrossRef]
- Rihoux, B.; Álamos-Concha, P.; Lobe, B. Qualitative Comparative Analysis (QCA): An integrative approach suited for diverse Mixed Methods and Multimethod research strategies. In The Routledge Reviewer’s Guide to Mixed Methods Analysis; Routledge: London, UK, 2021; pp. 185–197. [Google Scholar]
- Rasoolimanesh, S.M.; Ringle, C.M.; Sarstedt, M.; Olya, H. The combined use of symmetric and asymmetric approaches: Partial least squares-structural equation modelling and fuzzy-set qualitative comparative analysis. Int. J. Contemp. Hosp. Manag. 2021, 33, 1571–1592. [Google Scholar] [CrossRef]
- Wood, L.C.; Duong, L.N.K.; Wang, J.X. Business Process Improvement for Sustainable Technologies Investments in Construction: A Configurational Approach. Sustainability 2022, 14, 5697. [Google Scholar] [CrossRef]
- Oana, I.-E.; Schneider, C.Q. Sethmethods: An add-on R package for advanced QCA. R J. 2018, 10, 507–533. [Google Scholar] [CrossRef]
- Oana, I.-E.; Schneider, C.Q.; Thomann, E. Qualitative Comparative Analysis Using R. A Beginner’s Guide; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Dusa, A. Critical tension: Sufficiency and parsimony in QCA. Socil Methods Res. 2019, 51, 541–565. [Google Scholar] [CrossRef]
- Haesebrouck, T.; Thomann, E. Introduction: Causation, inferences, and solution types in configurational comparative methods. Qual. Quant. 2021. [Google Scholar] [CrossRef]
- Dusa, A. QCA with R. A Comprehensive Resource; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Mello, P.A. Qualitative Comparative Analysis: An Introduction to Research Design and Application; Georgetown University Press: Washington, DC, USA, 2021. [Google Scholar]
- Castro, R.G.; Ariño, M.A. A general approach to panel data set-theoretic research. J. Adv. Manag. Sci. Inf. Syst. 2016, 2, 63–76. [Google Scholar]
- Joshi, S.; Bailey, A.; Datta, A. On the move? Exploring constraints to accessing urban mobility infrastructures. Transp. Policy 2021, 102, 61–74. [Google Scholar] [CrossRef]
SDG | Description |
---|---|
3 | Good health and well-being |
7 | Affordable and clean energy |
8 | Decent work and economic growth |
9 | Industry, innovation and infrastructure |
11 | Sustainable cities and communities |
12 | Responsible consumption and production |
Level | Condition | Description |
---|---|---|
Landscape | Innovation (INN) | How well does the city leverage local talent and resources to drive technological advances? |
Regimen | Infrastructure (INF) | Has the city developed robust infrastructure and expanded connectivity to support future mobility? |
Market Attractiveness (MAT) | How well does the city engage the private sector and secure diverse investments to build out mobility? | |
System Efficiency (SEF) | How well does the municipal government coordinate and enhance the city’s mobility network through things like traffic management systems? | |
Social Impact (SIM) | Does the city maximize societal benefits like mobility-related employment or airport arrivals while minimizing harmful qualities like poor air quality? | |
Niche | Readiness (OVE) | Readiness as an indication of its future mobility capacity. |
inclS | PRI | covS | covU | Cities Covered | |
---|---|---|---|---|---|
SIM | 0.906 | 0.872 | 0.917 | 0.140 | Doha, Abu Dhabi, Dubai, Milan, Moscow, Zurich; Istanbul, Berlin, Atlanta, Dallas, Houston, SanFrancisco, Chicago, NewYork, LosAngeles, Boston, Sydney, Helsinki, Dublin, Toronto, Vancouver, Madrid, Montreal, Munich, Oslo, Amsterdam, Seoul, Stockholm, Washington.D.C., Paris, Barcelona, London, Singapore, Tokyo, HongKong |
INF*MAT*SEF | 0.997 | 0.995 | 0.819 | 0.041 | Warsaw, Beijing, Shanghai, Berlin, Atlanta, Dallas, Houston, SanFrancisco, Chicago, New York, LosAngeles, Boston, Sydney, Helsinki, Dublin, Toronto, Vancouver, Madrid, Montreal, Munich, Oslo, Amsterdam, Seoul, Stockholm, Washington.D.C., Paris, Barcelona, London, Singapore, Tokyo, Hong Kong |
Solution | 0.907 | 0.874 | 0.959 |
inclS | PRI | covS | covU | Cities Covered | |
---|---|---|---|---|---|
~INN*~INF*MAT | 0.909 | 0.688 | 0.381 | 0.001 | Dubai, Milan, Moscow |
~INN*~INF*~SEF | 0.976 | 0.964 | 0.873 | 0.496 | Johannesburg, Jakarta, Bangkok, Quito, Jeddah, Riyadh, Buenos Aires, Cape Town, Nairobi, Rio de Janeiro, Sao Paulo, Lagos, Manila, Casablanca, Santiago, Mexico City, Cairo, Lima, Delhi, Bogota, Mumbai, Doha, Abu Dhabi, Dubai |
~INN*~SIM*MAT | 0.944 | 0.806 | 0.342 | 0.007 | Warsaw |
~INN*MAT*~SEF | 0.914 | 0.702 | 0.390 | 0.005 | Dubai, Istanbul |
~INF*~SIM*MAT*~SEF | 0.961 | 0.867 | 0.343 | 0.018 | Kuala Lumpur |
Solution | 0.921 | 0.881 | 0.915 |
Robustness Calibration Range | ||||
---|---|---|---|---|
Lower Bound | Threshold | Upper Bound | ||
INF | Exclusion | NA | 34.2 | 58.2 |
Crossover | 47.4 | 58.4 | 60.4 | |
Inclusion | 59.3 | 81.3 | NA | |
SIM | Exclusion | 18.6 | 34.6 | 56.6 |
Crossover | 46.9 | 56.9 | 56.9 | |
Inclusion | 57.7 | 72.7 | NA | |
MAT | Exclusion | NA | 19.9 | 52.9 |
Crossover | 52.5 | 53.5 | 54.5 | |
Inclusion | 54.4 | 73.4 | NA | |
SEF | Exclusion | NA | 34.4 | 45.4 |
Crossover | 49.2 | 53.2 | 56.2 | |
Inclusion | 53.6 | 71.6 | NA | |
INN | Exclusion | -8.4 | 5.6 | 38.6 |
Crossover | 27.6 | 39.6 | 41.6 | |
Inclusion | 40.1 | 75.1 | NA | |
Raw Consistency Test | 0.85 | 0.85 | 0.85 | |
N.Cut range | 1 | 1 | 1 | |
Robustness parameter OVE | ||||
Fit_Oriented | RF_cov: 0.743 RF_cons: 0.989 RF_SC_minTS: 0.736 RF_SC_maxTS: 0.841 | |||
Case_Oriented | RCR_typ:735 RCR_dev:0.25 Rank:4 | |||
Robustness parameter ~OVE | ||||
Fit_Oriented | RF_cov: 0.714 RF_cons: 0.975 RF_SC_minTS: 0.695 RF_SC_maxTS: 0.772 | |||
Case_Oriented | RCR_typ:0.654 RCR_dev:0.071 Rank:4 |
Result: OVE | Result: ~OVE | ||||||
---|---|---|---|---|---|---|---|
SIM | INF*MAT*SEF | ~INN*~INF*MAT | ~INN*~INF*~SEF | ~INN*~SIM*MAT | ~INN *MAT*~SEF | ~INF*~SIM *MAT*~SEF | |
Consistencies | |||||||
Pooled | 0.906 | 0.997 | 0.909 | 0.976 | 0.944 | 0.914 | 0.961 |
Between High | 0.936 | 1.000 | 0.774 | 0.823 | 0.926 | 0.799 | 0.884 |
Between Low | 0.807 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 1.000 |
Between Lower-mid | 0.943 | 1.000 | 0.909 | 0.997 | 0.979 | 0.919 | 0.975 |
Between Upper-mid | 0.881 | 0.987 | 0.951 | 0.985 | 0.875 | 0.935 | 0.962 |
Distances | |||||||
From Between to Pooled | 0.031 | 0.003 | 0.046 | 0.039 | 0.026 | 0.039 | 0.023 |
Coverages | |||||||
Pooled | 0.917 | 0.819 | 0.381 | 0.873 | 0.342 | 0.390 | 0.343 |
Between High | 0.936 | 0.826 | 0.885 | 0.885 | 0.595 | 0.897 | 0.667 |
Between Low | 0.849 | 0.751 | 0.276 | 0.915 | 0.256 | 0.282 | 0.253 |
Between Lower-mid | 0.903 | 0.826 | 0.330 | 0.851 | 0.322 | 0.327 | 0.326 |
Between Upper-mid | 0.935 | 0.833 | 0.420 | 0.824 | 0.412 | 0.444 | 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Molina, C.; Rey-Tienda, M.d.l.S.; Suárez-Redondo, E.M. The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective. Int. J. Environ. Res. Public Health 2022, 19, 7197. https://doi.org/10.3390/ijerph19127197
Medina-Molina C, Rey-Tienda MdlS, Suárez-Redondo EM. The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective. International Journal of Environmental Research and Public Health. 2022; 19(12):7197. https://doi.org/10.3390/ijerph19127197
Chicago/Turabian StyleMedina-Molina, Cayetano, María de la Sierra Rey-Tienda, and Eva María Suárez-Redondo. 2022. "The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective" International Journal of Environmental Research and Public Health 19, no. 12: 7197. https://doi.org/10.3390/ijerph19127197
APA StyleMedina-Molina, C., Rey-Tienda, M. d. l. S., & Suárez-Redondo, E. M. (2022). The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective. International Journal of Environmental Research and Public Health, 19(12), 7197. https://doi.org/10.3390/ijerph19127197