The Mediating Effect of Physical Fitness and Dietary Intake on the Relationship of Physical Activity with Body Composition in High School Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.3.1. Physical Activity
2.3.2. Physical Fitness
2.3.3. Body Composition
2.3.4. Dietary Registration
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carnethon, M.R.; Gidding, S.S.; Nehgme, R.; Sidney, S.; Jacobs, J.; David, R.; Liu, K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA 2003, 290, 3092–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, G.R.; Harris, N.; Duncan, S.; Schofield, G. A review of adolescent high-intensity interval training. Sports Med. 2014, 44, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Herget, S.; Reichardt, S.; Grimm, A.; Petroff, D.; Kapplinger, J.; Haase, M.; Markert, J.; Bluher, S. High-intensity interval training for overweight adolescents: Program acceptance of a media supported intervention and changes in body composition. Int. J. Environ. Res. Public Health 2016, 13, 1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, G.R.; Harris, N.; Duncan, S.; Plank, L.D.; Merien, F.; Schofield, G. Low-active male adolescents: A dose response to high-intensity interval training. Med. Sci. Sports Exerc. 2016, 48, 481–490. [Google Scholar] [CrossRef]
- Marques, A.; Calmeiro, L.; Loureiro, N.; Frasquilho, D.; de Matos, M.G. Health complaints among adolescents: Associations with more screen-based behaviours and less physical activity. J. Adolesc. 2015, 44, 150–157. [Google Scholar] [CrossRef]
- Bluher, S.; Kapplinger, J.; Herget, S.; Reichardt, S.; Bottcher, Y.; Grimm, A.; Kratzsch, J.; Petroff, D. Cardiometabolic risk markers, adipocyte fatty acid binding protein (afabp) and the impact of high-intensity interval training (hiit) in obese adolescents. Metabolism 2017, 68, 77–87. [Google Scholar] [CrossRef]
- Lau, P.W.C.; Wong, D.P.; Ngo, J.K.; Liang, Y.; Kim, C.G.; Kim, H.S. Effects of high-intensity intermittent running exercise in overweight children. Eur. J. Sport Sci. 2015, 15, 182–190. [Google Scholar] [CrossRef]
- Cvetkovic, N.; Stojanovic, E.; Stojiljkovic, N.; Nikolic, D.; Scanlan, A.T.; Milanovic, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28 (Suppl. 1), 18–32. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Buchan, D.S.; Baker, J.S.; Macdonald, M.J.; Sculthorpe, N.F.; Easton, C.; Knox, A.; Grace, F.M. Sprint interval training and the school curriculum: Benefits upon cardiorespiratory fitness, physical activity profiles, and cardiometabolic risk profiles of healthy adolescents. Pediatric Exerc. Sci. 2019, 31, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Jebeile, H.; Lister, N.B.; Baur, L.A.; Garnett, S.P.; Paxton, S.J. Eating disorder risk in adolescents with obesity. Obes. Rev. 2021, 22, e13173. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control. 2017, 28, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.T.; Fraser, S.F.; Levinger, I.; Straznicky, N.E.; Dixon, J.B.; Reynolds, J.; Selig, S.E. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: A systematic review. PLoS ONE 2013, 8, e81692. [Google Scholar] [CrossRef] [Green Version]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015, 16 (Suppl. 1), 67–76. [Google Scholar] [CrossRef] [Green Version]
- Courneya, K.S. Efficacy, effectiveness, and behavior change trials in exercise research. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Bond, B.; Cockcroft, E.J.; Williams, C.A.; Harris, S.; Gates, P.E.; Jackman, S.R.; Armstrong, N.; Barker, A.R. Two weeks of high-intensity interval training improves novel but not traditional cardiovascular disease risk factors in adolescents. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1039–H1047. [Google Scholar] [CrossRef]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef]
- Póvoas, S.C.; Castagna, C.; Soares, J.M.; Silva, P.M.; Lopes, M.V.; Krustrup, P. Reliability and validity of yo-yo tests in 9- to 16-year-old football players and matched non-sports active schoolboys. Eur. J. Sport Sci. 2016, 16, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R.K.; Gore, C.J. Physiological Tests for Elite Athletes, 2nd ed.; Human Kinetics (Australian Institute of Sport): Champaign, IL, USA, 2014. [Google Scholar]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The yo-yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Laurson, K.R.; Eisenmann, J.C.; Cureton, K.J. Development of youth aerobic-capacity standards using receiver operating characteristic curves. Am. J. Prev. Med. 2011, 41, S111–S116. [Google Scholar] [CrossRef] [PubMed]
- Henriques-Neto, D.; Minderico, C.; Peralta, M.; Marques, A.; Sardinha, L.B. Test–retest reliability of physical fitness tests among young athletes: The fitescola® battery. Clin. Physiol. Funct. Imaging 2020, 40, 173–182. [Google Scholar] [CrossRef]
- Plowman, S.A.M.; Meredith, M.D. (Eds.) Fitnessgram/Activitygram Reference Guide, 4th ed.; The Cooper Institute: Dallas, TX, USA, 2019. [Google Scholar]
- Jackson, A.S.; Pollock, M.L.; Graves, J.E.; Mahar, M.T. Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol. 1985 1988, 64, 529–534. [Google Scholar] [CrossRef]
- Laurson, K.R.; Eisenmann, J.C.; Welk, G.J. Development of youth percent body fat standards using receiver operating characteristic curves. Am. J. Prev. Med. 2011, 41, S93–S99. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (iotf) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male portuguese community sample. J. Am. Diet. Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Portney, L.; Watkins, M.; Portney, L.G.; Watkins, M.P. Statistical Measures of Reliability. Foundations of Clinical Research: Applications to Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2000; Volume 2, pp. 557–588. [Google Scholar]
- Hayes, A.F. Beyond baron and kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Spss and sas procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Sobel, M.E. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol. Methodol. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Ncd Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar]
- Pozuelo-Carrascosa, D.P.; Cavero-Redondo, I.; Herráiz-Adillo, Á.; Díez-Fernández, A.; Sánchez-López, M.; Martínez-Vizcaíno, V. School-based exercise programs and cardiometabolic risk factors: A meta-analysis. Pediatrics 2018, 142, e20181033. [Google Scholar] [CrossRef] [Green Version]
- Kilian, Y.; Engel, F.; Wahl, P.; Achtzehn, S.; Sperlich, B.; Mester, J. Markers of biological stress in response to a single session of high-intensity interval training and high-volume training in young athletes. Eur. J. Appl. Physiol. 2016, 116, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bacha, F.; Hannon, T.; Kuk, J.L.; Boesch, C.; Arslanian, S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: A randomized, controlled trial. Diabetes 2012, 61, 2787–2795. [Google Scholar] [CrossRef] [Green Version]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Pollock, E.; Kennedy, S.G.; Lubans, D.R. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: A pilot randomized controlled trial. Prev. Med. Rep. 2015, 2, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Leahy, A.A.; Eather, N.; Smith, J.J.; Hillman, C.H.; Morgan, P.J.; Plotnikoff, R.C.; Nilsson, M.; Costigan, S.A.; Noetel, M.; Lubans, D.R. Feasibility and preliminary efficacy of a teacher-facilitated high-intensity interval training intervention for older adolescents. Pediatric Exerc. Sci. 2019, 31, 107–117. [Google Scholar] [CrossRef]
- Weston, K.L.; Azevedo, L.B.; Bock, S.; Weston, M.; George, K.P.; Batterham, A.M. Effect of novel, school-based high-intensity interval training (hit) on cardiometabolic health in adolescents: Project ffab (fun fast activity blasts)—An exploratory controlled before-and-after trial. PLoS ONE 2016, 11, e0159116. [Google Scholar] [CrossRef] [Green Version]
Title 1 | Title 2 |
---|---|
Anthropometric (n) | 236 (f = 140) |
Body Fat (%) | 25.0 (7.8) |
High metabolic syndrome risk | 33% |
Lean Body Mass (kg) | 45.3 (8.7) |
BMI (kg m−2) | 22.0 (3.7) |
Thinness (<−2 SD) | 2% |
Normal-weight | 82% |
Overweight (>+1 SD) | 10% |
Obesity (>+2 SD) | 6% |
Basal Metabolic Rate (Kcal) | 1531.6 (249.3) |
Dietary Registration (n) | 236 (f = 140) |
Daily Kcal | 2129.3 (1170.1) |
Cardiorespiratory Fitness (n) | 235 (f = 139) |
Yo-Yo IE L-1 (laps) | 23.7 (18.2) |
“low fitness” level | 71% |
Muscular Fitness (n) | 223 (f = 134) |
Push-ups (reps) | 15.3 (9.7) |
“low fitness” level | 23% |
Physical Activity (n) | 236 (f = 140) |
Sedentary (min day−1) | 842.4 (161.5) |
Light (min day−1) | 139.6 (44.0) |
Moderate (min day−1) | 23.0 (9.5) |
Vigorous (min day−1) | 13.6 (11.1) |
Recommended MVPA | 8% |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | Body Fat | x | ||||||||||
2. | Lean Body Mass | −0.273 † | x | |||||||||
3. | BMI | 0.556 † | 0.548 † | x | ||||||||
4. | Basal metabolic rate | −0.258 † | 0.977 † | 0.548 † | x | |||||||
5. | Daily Kcal | −0.146 * | 0.642 † | 0.445 † | 0.615 † | x | ||||||
6. | Yo-Yo IE L−1 | −0.790 † | 0.381 † | −0.274 † | 0.383 † | 0.269 † | x | |||||
7. | Upper body strength | −0.687 † | 0.317 † | −0.238 † | 0.314 † | 0.256 † | 0.727 † | x | ||||
8. | Sedentary | 0.092 | −0.177 † | −0.044 | −0.144 * | −0.136 * | −0.139 * | −0.114 | x | |||
9. | Light | −0.020 | 0.039 | 0.062 | 0.060 | 0.433 † | −0.029 | 0.003 | 0.272† | x | ||
10. | Moderate | −0.101 | 0.073 | 0.046 | 0.059 | 0.521 † | 0.072 | 0.078 | 0.154 * | 0.567 † | x | |
11. | Vigorous | −0.400 † | 0.352 † | 0.009 | 0.339 † | 0.670 † | 0.482 † | 0.400 † | 0.012 | 0.290 † | 0.428 † | x |
12. | Daily MVPA | −0.287 † | 0.267 † | 0.046 | 0.242 † | 0.739 † | 0.347 † | 0.310 † | −0.113 | 0.380 † | 0.740 † | 0.833 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bento, A.; Carrasco, L.; Raimundo, A. The Mediating Effect of Physical Fitness and Dietary Intake on the Relationship of Physical Activity with Body Composition in High School Students. Int. J. Environ. Res. Public Health 2022, 19, 7301. https://doi.org/10.3390/ijerph19127301
Bento A, Carrasco L, Raimundo A. The Mediating Effect of Physical Fitness and Dietary Intake on the Relationship of Physical Activity with Body Composition in High School Students. International Journal of Environmental Research and Public Health. 2022; 19(12):7301. https://doi.org/10.3390/ijerph19127301
Chicago/Turabian StyleBento, André, Luis Carrasco, and Armando Raimundo. 2022. "The Mediating Effect of Physical Fitness and Dietary Intake on the Relationship of Physical Activity with Body Composition in High School Students" International Journal of Environmental Research and Public Health 19, no. 12: 7301. https://doi.org/10.3390/ijerph19127301
APA StyleBento, A., Carrasco, L., & Raimundo, A. (2022). The Mediating Effect of Physical Fitness and Dietary Intake on the Relationship of Physical Activity with Body Composition in High School Students. International Journal of Environmental Research and Public Health, 19(12), 7301. https://doi.org/10.3390/ijerph19127301