Microbial Contamination and Public Health: An Overview
Abstract
:1. Food Born Diseases
2. Food Preservation Techniques
Funding
Conflicts of Interest
References
- Do Prado-Silva, L.; Brancini, G.T.P.; Braga, G.Ú.L.; Liao, X.; Ding, T.; Sant’Ana, A.S. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022, 132, 108527. [Google Scholar] [CrossRef]
- Jaffee, S.; Henson, S.; Unnevehr, L.; Grace, D.; Cassou, E. The safe food imperative: Accelerating progress in low- and middle-income countries. World Bank 2019, 46, 48. [Google Scholar] [CrossRef]
- Potortì, A.G.; Tropea, A.; Lo Turco, V.; Pellizzeri, V.; Belfita, A.; Dugo, G.; Di Bella, G. Mycotoxins in spices and culinary herbs from Italy and Tunisia. Nat. Prod. Res. 2020, 34, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Holban, A.M.; Grumezescu, A.M. Microbial Contamination and Food Degradation. In Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2018; Volume 2, pp. 25–26; Volume 4, pp. 86–89. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of Food and Agriculture 2019. Moving forward on Food Loss and Waste Reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2019. Available online: http://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 15 June 2022).
- Tropea, A.; Ferracane, A.; Albergamo, A.; Potortì, A.G.; Lo Turco, V.; Di Bella, G. Single Cell Protein Production through Multi Food-Waste SubstrateFermentation. Fermentation 2022, 8, 91. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Tropea, A. Food Waste Valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Parra, P.A.; Kim, H.; Shapiro, M.A.; Gravani, R.B.; Bradley, S.D. Home food safety knowledge, risk perception, and practices among Mexican-Americans. Food Control 2014, 37, 115–125. [Google Scholar] [CrossRef]
- Tesson, V.; Federighi, M.; Cummins, E.; de Oliveira, M.J.; Guillou, S.; Boué, G. A Systematic Review of Beef Meat Quantitative Microbial Risk Assessment Models. Int. J. Environ. Res. Public Health 2020, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Draeger, C.; Akutsu, R.; Araújo, W.; da Silva, I.; Botelho, R.; Zandonadi, R. Epidemiological Surveillance System on Foodborne Diseases in Brazil after 10-Years of Its Implementation: Completeness Evaluation. Int. J. Environ. Res. Public Health 2018, 15, 2284. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases, 1st ed.; WHO Library Cataloguing-in-Publication Data, Ed.; World Health Organization: Geneva, Switzerland, 2015; ISBN 978-92-4-156516-5. [Google Scholar]
- da Silva Farias, A.; Akutsu, R.; Botelho, R.; Zandonadi, R. Good Practices in Home Kitchens: Construction and Validation of an Instrument for Household Food-Borne Disease Assessment and Prevention. Int. J. Environ. Res. Public Health 2019, 16, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lijie, S.; Shusai, W.; Linhai, W.; Fu-Sheng, T. Cognitive Biases of Consumers’ Risk Perception of Foodborne Diseases in China: Examining Anchoring Effect. Int. J. Environ. Res. Public Health 2019, 16, 2268. [Google Scholar] [CrossRef] [Green Version]
- Fung, F.; Huei-Shyong, W.; Suresh, M. Food safety in the 21st century. Biomed. J. 2018, 41, 288–295. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, C.P. The Impact of Food Manufacturing Practices on Food borne Diseases. Braz. Arch. Biol. Technol. 2008, 51, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; Sant’Ana, A.D.S. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Cebrian, G.; Manas, P.; Condon, S. Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation. Front. Microbiol. 2016, 7, 734. [Google Scholar] [CrossRef]
- Ferrario, M.I.; Guerrero, S.N. Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Rev. Argent. Microbiol. 2018, 50, 3–11. [Google Scholar] [CrossRef]
- Akbar, B.; Rana, D.; Seid, M.J.; Leonard, W. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends Food Sci. Technol. 2019, 94, 20–31. [Google Scholar] [CrossRef]
- Akbar, B.; Zahra, M.B.; Keith, S.; Seid, M.J.; Leonard, W. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci. Technol. 2020, 96, 61–78. [Google Scholar] [CrossRef]
- Mahdieh, M.; Mohammad, R.S.; Faezeh, S.; Maryam, T.Z. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Woo-Ju, K.; Sang-Hyun, P.; Dong-Hyun, K. Inactivation of foodborne pathogens influenced by dielectric properties, relevant to sugar contents, in chili sauce by 915 MHz microwaves. LWT 2018, 96, 111–118. [Google Scholar] [CrossRef]
- Zhongwei, C.; Yulin, L.; Likun, W.; Shuyi, L.; Keke, W.; Jun, S.; Bin, X. Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germ lipase. J. Food Process. Eng. 2017, 40, e12506. [Google Scholar] [CrossRef]
- Mikš-Krajnika, M.; Fenga, L.X.J.; Bang, W.S.; Yuk, H.G. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Xiao-Ting, X.; Tian, D.; Jiao, L.; Ju-Hee, A.; Yong, Z.; Shi-Guo, C.; Xing-Qian, Y.; Dong-Hong, L. Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control 2017, 71, 17–25. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef] [Green Version]
- Timmons, C.; Pai, K.; Jacob, J.; Zhang, G.; Li, M.M. Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes by a novel surface discharge cold plasma design. Food Control 2018, 84, 455–462. [Google Scholar] [CrossRef]
- Yunbin, J.; Kimberly, S.; Georgios, P.; Philip, D.; Xihong, L.; Sudarsan, M.; Tony, J.; Xuetong, F. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. Int. J. Food Microbiol. 2017, 249, 53–60. [Google Scholar] [CrossRef]
- Kim, J.H.; Min, S.C. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes. Food Control 2018, 84, 321–329. [Google Scholar] [CrossRef]
- Khanh, T.K.P.; Huan, T.P.; Charles, S.B.; Yuthana, P. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. Int. J. Food Sci. Technol. 2017, 52, 2127–2137. [Google Scholar] [CrossRef]
- Ilgaz, A.; Emrah, T.; Fatih, E. Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom. Postharvest Biol. Technol. 2015, 109, 40–44. [Google Scholar] [CrossRef]
- Mritunjay, S.K.; Kumar, V. Fresh farm produce as a source of pathogens: A review. Res. J. Environ. Toxicol. 2015, 9, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Papachristodoulou, M.; Koukounaras, A.; Siomos, A.S.; Liakou, A.; Gerasopoulos, D. The effects of ozonated water on the microbial counts and the shelf life attributes of fresh-cut spinach. J. Food Process. Preserv. 2018, 42, e13404. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropea, A. Microbial Contamination and Public Health: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7441. https://doi.org/10.3390/ijerph19127441
Tropea A. Microbial Contamination and Public Health: An Overview. International Journal of Environmental Research and Public Health. 2022; 19(12):7441. https://doi.org/10.3390/ijerph19127441
Chicago/Turabian StyleTropea, Alessia. 2022. "Microbial Contamination and Public Health: An Overview" International Journal of Environmental Research and Public Health 19, no. 12: 7441. https://doi.org/10.3390/ijerph19127441
APA StyleTropea, A. (2022). Microbial Contamination and Public Health: An Overview. International Journal of Environmental Research and Public Health, 19(12), 7441. https://doi.org/10.3390/ijerph19127441