Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies
Abstract
:1. Introduction
2. Materials and Methods
- Study characteristics: title, first author, year of publication, country of study, cohort name, study design, sample size, study aim, and follow-up periods.
- Population characteristics: age, race/ethnicity, smoking, body mass index, menopausal status, and tumor characteristics (stage and estrogen receptor (ER) status).
- Exposure: a diet quality index used, the dietary assessment tools (food frequency questionnaire, dietary record, or dietary recall) and the dietary assessment timing regarding breast cancer diagnosis (before/at or after diagnosis) and target of diet assessed (pre-diagnostic diet or post-diagnostic diet).
- Comparison: high versus low dietary quality score.
- Outcome: recurrence and mortality (all-cause, cancer, and noncancer-specific), ascertainment methods (self-report, medical records, vitality records, National Death Index, or death certificate), RR/HR and 95% CI comparing high vs. low index score, covariates included in the multivariable model, and overall findings from the study.
3. Results
3.1. Results of the Search
3.1.1. Diet Quality Index
3.1.2. Main Outcomes
3.2. Effects on Breast Cancer Recurrence
3.3. Effects on All-Cause Mortality
3.4. Effects on Breast Cancer-Specific Mortality
3.5. Subgroup Analyses by Diet Quality Index
3.6. Subgroup Analyses by Patient and Tumor Characteristics
3.7. Sensitivity Analyses and Publication Bias
3.8. Quality of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeken, R.J.; Williams, K.; Wardle, J.; Croker, H. “What about diet?” A qualitative study of cancer survivors’ views on diet and cancer and their sources of information. Eur. J. Cancer Care 2016, 25, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tande, D.L.; Magel, R.; Strand, B.N. Healthy Eating Index and abdominal obesity. Public Health Nutr. 2010, 13, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- George, S.M.; Neuhouser, M.L.; Mayne, S.T.; Irwin, M.L.; Albanes, D.; Gail, M.H.; Alfano, C.M.; Bernstein, L.; McTiernan, A.; Reedy, J.; et al. Postdiagnosis diet quality is inversely related to a biomarker of inflammation among breast cancer survivors. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2220–2228. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.S.; Andridge, R.R.; Yee, L.D.; Lustberg, M.B. Diet Quality, Inflammation, and Quality of Life in Breast Cancer Survivors: A Cross-Sectional Analysis of Pilot Study Data. J. Acad. Nutr. Diet. 2018, 118, 578. [Google Scholar] [CrossRef]
- Castello, A.; Prieto, L.; Ederra, M.; Salas-Trejo, D.; Vidal, C.; Sanchez-Contador, C.; Santamarina, C.; Pedraz, C.; Moreo, P.; Aragones, N.; et al. Association between the Adherence to the International Guidelines for Cancer Prevention and Mammographic Density. PLoS ONE 2015, 10, e0132684. [Google Scholar] [CrossRef]
- Jones, J.A.; Hartman, T.J.; Klifa, C.S.; Coffman, D.L.; Mitchell, D.C.; Vernarelli, J.A.; Snetselaar, L.G.; Van Horn, L.; Stevens, V.J.; Robson, A.M.; et al. Dietary energy density is positively associated with breast density among young women. J. Acad. Nutr. Diet 2015, 115, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Masala, G.; Ambrogetti, D.; Assedi, M.; Giorgi, D.; Del Turco, M.R.; Palli, D. Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population. Int. J. Cancer J. Int. Cancer 2006, 118, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, K.A.; Tamimi, R.M.; Scott, C.G.; Jensen, M.R.; Pankratz, V.; Visscher, D.; Norman, A.; Couch, F.; Shepherd, J.; Fan, B.; et al. Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res. BCR 2013, 15, R104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, G.L.; Wang, K.A. Dietary fat reduction and breast cancer outcome: Results from the Women’s Intervention Nutrition Study (WINS). Am. J. Clin. Nutr. 2007, 86, 878s–881s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.E.; Heinrich, M.; Beeken, R.J.; Wardle, J. Weight Loss and Mortality in Overweight and Obese Cancer Survivors: A Systematic Review. PLoS ONE 2017, 12, e0169173. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.B.; Bao, W.; Liu, B.Y.; Caan, B.J.; Lane, D.S.; Millen, A.E.; Simon, M.S.; Thomson, C.A.; Tinker, L.F.; Van Horn, L.V.; et al. Changes in Overall Diet Quality in Relation to Survival in Postmenopausal Women with Breast Cancer: Results from the Women’s Health Initiative. J. Acad. Nutr. Diet. 2018, 118, 1855–1863.e6. [Google Scholar] [CrossRef]
- Thomson, C.A.; Flatt, S.W.; Rock, C.L.; Ritenbaugh, C.; Newman, V.; Pierce, J.P. Increased fruit, vegetable and fiber intake and lower fat intake reported among women previously treated for invasive breast cancer. J. Am. Diet Assoc. 2002, 102, 801–808. [Google Scholar] [CrossRef]
- Lee, E.; Zhu, J.; Velazquez, J.; Bernardo, R.; Garcia, J.; Rovito, M.; Hines, R.B. Evaluation of Diet Quality Among American Adult Cancer Survivors: Results From 2005-2016 National Health and Nutrition Examination Survey. J. Acad. Nutr. Diet 2021, 121, 217–232. [Google Scholar] [CrossRef]
- Maria, S.; Snyder, D.; Abrams, D.I. Pros, Cons of Dietary Strategies Popular among Cancer Patients. Oncology 2018, 32, 542–547. [Google Scholar]
- Rock, C.L.; Thomson, C.A.; Sullivan, K.R.; Howe, C.L.; Kushi, L.H.; Caan, B.J.; Neuhouser, M.L.; Bandera, E.V.; Wang, Y.; Robien, K.; et al. American Cancer Society nutrition and physical activity guideline for cancer survivors. CA Cancer J. Clin. 2022, 72, 230–262. [Google Scholar] [CrossRef]
- Doyle, C.; Kushi, L.H.; Byers, T.; Courneya, K.S.; Demark-Wahnefried, W.; Grant, B.; McTiernan, A.; Rock, C.L.; Thompson, C.; Gansler, T.; et al. Nutrition and physical activity during and after cancer treatment: An American Cancer Society guide for informed choices. CA Cancer J. Clin. 2006, 56, 323–353. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, M. The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective: Nutrition Society and BAPEN Medical Symposium on ‘Nutrition support in cancer therapy’. Proc. Nutr. Soc. 2008, 67, 253–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund; American Institute for Cancer Research. Food, Nutrition, Physical Activity and Cancer: A Global Perspective. 2007. Available online: https://web.archive.org/web/20160507140127/http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf (accessed on 20 January 2021).
- World Cancer Research Fund; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018. Available online: https://www.wcrf.org/sites/default/files/Summary-of-Third-Expert-Report-2018.pdf (accessed on 20 January 2021).
- Morze, J.; Danielewicz, A.; Hoffmann, G.; Schwingshackl, L. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: A Second Update of a Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet 2020, 120, 1998–2031.e1915. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of diet on mortality and cancer recurrence among cancer survivors: A systematic review and meta-analysis of cohort studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.M.; Irwin, M.L.; Smith, A.W.; Neuhouser, M.L.; Reedy, J.; McTiernan, A.; Alfano, C.M.; Bernstein, L.; Ulrich, C.M.; Baumgartner, K.B.; et al. Postdiagnosis diet quality, the combination of diet quality and recreational physical activity, and prognosis after early-stage breast cancer. Cancer Causes Control 2011, 22, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Izano, M.A.; Fung, T.T.; Chiuve, S.S.; Hu, F.B.; Holmes, M.D. Are diet quality scores after breast cancer diagnosis associated with improved breast cancer survival? Nutr. Cancer 2013, 65, 820–826. [Google Scholar] [CrossRef] [Green Version]
- George, S.M.; Ballard-Barbash, R.; Shikany, J.M.; Caan, B.J.; Freudenheim, J.L.; Kroenke, C.H.; Vitolins, M.Z.; Beresford, S.A.; Neuhouser, M.L. Better Postdiagnosis Diet Quality Is Associated with Reduced Risk of Death among Postmenopausal Women with Invasive Breast Cancer in the Women’s Health Initiative. Cancer Epidemiol. Biomark. Prev. 2014, 23, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet 2018, 118, 74–100.e111. [Google Scholar] [CrossRef] [Green Version]
- Pourmasoumi, M.; Karimbeiki, R.; Vosoughi, N.; Feizi, A.; Ghiasvand, R.; Barak, F.; Miraghajani, M. Healthy eating index/alternative healthy eating index and breast cancer mortality and survival: A systematic review and meta-analysis. Asia-Pac. J. Oncol. Nurs. 2016, 3, 297–305. [Google Scholar] [CrossRef]
- Kim, E.H.; Willett, W.C.; Fung, T.; Rosner, B.; Holmes, M.D. Diet quality indices and postmenopausal breast cancer survival. Nutr. Cancer 2011, 63, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, A.A.; Shirvani, S.M.; Likhacheva, A.; Chhatwal, J.; Chiao, E.Y.; Sonawane, K. The Association Between Dietary Quality and Overall and Cancer-Specific Mortality Among Cancer Survivors, NHANES III. JNCI Cancer Spectr. 2018, 2, pky022. [Google Scholar] [CrossRef]
- Karavasiloglou, N.; Pestoni, G.; Faeh, D.; Rohrmann, S. Post-Diagnostic Diet Quality and Mortality in Females with Self-Reported History of Breast or Gynecological Cancers: Results from the Third National Health and Nutrition Examination Survey (NHANES III). Nutrients 2019, 11, 2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Maso, M.; Dal Maso, L.; Augustin, L.S.A.; Puppo, A.; Falcini, F.; Stocco, C.; Mattioli, V.; Serraino, D.; Polesel, J. Adherence to the Mediterranean Diet and Mortality after Breast Cancer. Nutrients 2020, 12, 3649. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, H.; Gu, K.; Shi, L.; Yu, D.X.; Zhang, M.L.; Zheng, W.; Zheng, Y.; Bao, P.P.; Shu, X.O. Adherence to Dietary Recommendations among Long-Term Breast Cancer Survivors and Cancer Outcome Associations. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Ergas, I.J.; Cespedes Feliciano, E.M.; Bradshaw, P.T.; Roh, J.M.; Kwan, M.L.; Cadenhead, J.; Santiago-Torres, M.; Troeschel, A.N.; Laraia, B.; Madsen, K.; et al. Diet Quality and Breast Cancer Recurrence and Survival: The Pathways Study. JNCI Cancer Spectr. 2021, 5, pkab019. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Gapstur, S.M.; Shah, R.; Campbell, P.T.; Wang, Y.; Doyle, C.; Gaudet, M.M. Pre- and postdiagnostic diet in relation to mortality among breast cancer survivors in the CPS-II Nutrition Cohort. Cancer Causes Control. 2016, 27, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Covidence Systematic Review Software; Veritas Health Innovation: Melbourne, Australia, 2022.
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 15 October 2021).
- GRADEpro GDT: GRADEpro Guideline Development Tool, McMaster University and Evidence Prime. 2022. Available online: https://www.gradepro.org/ (accessed on 20 January 2021).
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. (Eds.) GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Updated October 2013; The GRADE Working Group: Hamilton, ON, Canada, 2013; Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 20 January 2021).
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsegge, G.; Looman, M.; Smit, H.A.; Daviglus, M.L.; van der Schouw, Y.T.; Verschuren, W.M. Lifestyle Changes in Young Adulthood and Middle Age and Risk of Cardiovascular Disease and All-Cause Mortality: The Doetinchem Cohort Study. J. Am. Heart Assoc. 2016, 5, e002432. [Google Scholar] [CrossRef] [Green Version]
- Wayne, S.J.; Baumgartner, K.; Baumgartner, R.N.; Bernstein, L.; Bowen, D.J.; Ballard-Barbash, R. Diet quality is directly associated with quality of life in breast cancer survivors. Breast Cancer Res. Treat. 2006, 96, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; Ian McKenzie, C.; Hijikata, A.; Wong, C.; et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 2015, 6, 6734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Subar, A.F.; Hollenbeck, A.; Schatzkin, A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 2011, 171, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchetto, A.; Serraino, D.; Shivappa, N.; Hébert, J.R.; Stocco, C.; Puppo, A.; Falcini, F.; Panato, C.; Dal Maso, L.; Polesel, J. Dietary inflammatory index before diagnosis and survival in an Italian cohort of women with breast cancer. Br. J. Nutr. 2017, 117, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Sun, J.Z.; Wu, Q.X.; Li, Z.Y.; Li, D.X.; Xiong, Y.F.; Zhong, G.C.; Shi, Y.; Li, Q.; Zheng, J.; et al. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: A prospective cohort study. NPJ Breast Cancer 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Chung, M.S.; Kang, S.S.; Park, Y. Association between the Dietary Inflammatory Index and Risk for Cancer Recurrence and Mortality among Patients with Breast Cancer. Nutrients 2018, 10, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Sturgeon, K.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. A randomized trial of exercise and diet on body composition in survivors of breast cancer with overweight or obesity. Breast Cancer Res. Treat. 2021, 189, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Flatt, S.W.; Byers, T.E.; Colditz, G.A.; Demark-Wahnefried, W.; Ganz, P.A.; Wolin, K.Y.; Elias, A.; Krontiras, H.; Liu, J.; et al. Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) Trial: A Behavioral Weight Loss Intervention in Overweight or Obese Breast Cancer Survivors. J. Clin. Oncol. 2015, 33, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Huet, C.; Rosol, R.; Egeland, G.M. The Prevalence of Food Insecurity Is High and the Diet Quality Poor in Inuit Communities. J. Nutr. 2012, 142, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Grimm, K.A.; Moore, L.V.; Scanlon, K.S. Access to Healthier Food Retailers—United States, 2011. In CDC Health Disparities and Inequalities Report—United States, 2013; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; Morbidity and Mortality Weekly Report; Volume 62, (Suppl. S3), pp. 20–26. [Google Scholar]
- Kroke, A.; Klipstein-Grobusch, K.; Voss, S.; Möseneder, J.; Thielecke, F.; Noack, R.; Boeing, H. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: Comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am. J. Clin. Nutr. 1999, 70, 439–447. [Google Scholar] [CrossRef]
Criteria | Description |
---|---|
Participants | Adult female breast cancer survivors (age ≥ 18 years) |
Exposure | Diet quality score (i.e., adherence score to predefined, healthy dietary recommendations) |
Comparison | Highest vs. lowest categories of diet quality index/score |
Outcome | Breast cancer recurrence and/or mortality |
Study Design | Cohort study. Follow-ups of a cross-sectional or case–control study are also eligible for inclusion |
First Author Year Country | Cohort Name Study Type Total N Mean/Median Follow-Up Duration (year) | Age (Range) (Years) White/Black (%) Mean BMI (Distribution) Postmenopause (%) ER+ (%) Current Smokers (%) | Dietary Assessment Tool/Timing/Target | Dietary Quality Index Comparison | Outcomes Reported (Cases of Outcome) Ascertainment Methods | Multivariable-Adjusted: HR (95% CI) | Covariates Included in the Model | Study Quality 1 |
---|---|---|---|---|---|---|---|---|
Kim 2011 USA | NHS Prospective cohort 2729 BC survivors 16 years after diagnosis | 30–55 NR 25.0–26.7 NR NR 13.43% | FFQ (1980: 160 items, 1984: 130 items) ≥12 months after diagnosis Post-diagnosis diet | AHEI, DQIR, RFS, aMED Q5 vs. Q1 | All-cause death (572) BC death (302) Family members, Postal service, National Death Index, Death certificate | All-cause mortality AHEI: 0.85 (0.63, 1.17) aMED: 0.87 (0.64, 1.17) DQIR: 0.78 (0.58, 1.07) RFS: 1.03 (0.74, 1.42) BC mortality AHEI: 1.53 (0.98, 2.39) aMED: 1.15 (0.74, 1.77) DQIR: 0.81 (0.53, 1.24) RFS: 1.54 (0.95, 2.47) | BMI, current smoker, physical activity, calories, alcohol, multivitamin use, oral contraceptives, postmenopausal hormone therapy, chemotherapy, radiation, tamoxifen, cancer stage | 6 |
George 2011 USA | HEAL Prospective cohort 670 BC survivors 6 years after assessment | 57.9 (18–64) 57.6% white, 28% black 27.4–28.6 60.9% 69.5% 12.69% | FFQ (122 items) 6–30 months after diagnosis Post-diagnosis diet | HEI-2005 Q4 vs. Q1 | All-cause death (62) BC death (24) State mortality files, National Death Index, | All-cause mortality HEI-2005: 0.40 (0.17, 0.94) BC mortality HEI-2005: 0.12 (0.02, 0.99) | Age, race/ethnicity, menopausal status, treatment type, localized/regional, Tamoxifen use, ER status, HEI-2005 score, energy, BMI, smoking status, physical activity | 6 |
Izano 2013 USA | NHS Prospective cohort 4103 BC survivors 112 months after diagnosis | 60.4 (30–55) NR 24.9–26.9 Mix 80% 63% | FFQ ≥12 months after diagnosis, updated every 4 years Post-diagnosis diet | DASH, AHEI-2010 Q5 vs. Q1 | BC death (453) Non-BC death (528) Recurrence (38) Death: Family members, Postal service National Death Index Recurrence:self-report on questionnaire | All-cause mortality AHEI-2010: 1.07 (0.77, 1.49) DASH: 0.85 (0.61, 1.19) BC mortality AHEI-2010: 1.07 (0.77, 1.49) DASH: 0.85 (0.61, 1.19) BC recurrence No associations (data not shown) | Age at diagnosis, age at first birth, parity, BMI at diagnosis, physical activity, use of oral contraceptives, postmenopausal hormones, current smoker, postmenopausal at diagnosis, ER, cancer stage, radiation treatment, chemotherapy, hormone treatment | 6 |
George 2014 USA | WHI Prospective cohort 2317 BC survivors Median 9.6 years after assessment | 63.63 (50–97) 88.6% white, 5.7% black 28.6–29.3 100% 75% NR | FFQ (122 items) 1.5 (0–6) years after diagnosis Post-diagnosis diet | HEI-2005 Q4 vs. Q1 | All-cause death (415) BC death (188) National Death Index | All-cause mortality HEI-2005: 0.74 (0.55, 0.99) BC mortality HEI-2005: 0.91 (0.60, 1.40) | Age, years since diagnosis, calories, alcohol servings, MET-hours/week of MVPA, BMI, race/ethnicity, education, income, stage, ER, PR, postmenopausal hormone therapy | 7 |
McCullough 2016 USA | CPS-II Nutrition Prospective cohort Pre: 4452 BC survivors, 9.8 years after diagnosis Post: 2152 BC survivors, 9.9 years after assessment | 70.7 ± 7.2 years (40–93) 97.7% white <18.5 (0.5–1.2%) 18.5–<25 (38.6–57.8%) 25–<30 (28–34.8%) 30+ (11.1–24.5%) 79.5% 0.07% | FFQ (baseline- 68 items, follow up-152 items) 12 months after diagnosis Pre-diagnosis and post-diagnosis diet | ACS Q3 vs. Q1 | Pre-diagnostic: All-cause death (1204) BC death (398) CVD death (233) Other causes of death (573) Post-diagnostic: All-cause death (640) BC death (192) CVD death (129) Other cause death (319) National Death Index | Pre-diagnostic: All-cause mortality ACS: 1.00 (0.84, 1.18) BC mortality ACS: 1.06 (0.79, 1.42) Post-diagnostic: All-cause mortality ACS: 0.93 (0.73, 1.18) BC mortality ACS: 1.44 (0.90, 2.30) | Age at diagnosis, year of BC diagnosis, race/ethnicity, tumor stage at diagnosis, tumor grade at diagnosis, ER, PR, surgery, radiation, chemotherapy as initial treatment, BMI, cigarette smoking status, physical activity, hormone replacement therapy | 7 |
Deshmukh 2018 USA | NHANES III Retrospective cohort 131 BC survivors Median 17.2 years after assessment | (40–69) 95% white NR NR NR NR | 24-h recall NR Post-diagnosis diet | HEI 1994–1996 Q4 vs. Q1 | All-cause death (NR) BC death (NR) National Center for Health Statistics Linked Mortality Files | All-cause mortality HEI: 0.59 (0.45, 0.77) BC mortality HEI: 0.40 (0.18, 0.89) | Age, sex, income, education, and BMI | 6 |
Sun 2018 USA | WHI Prospective cohort 2295 BC survivors 12 years after assessment | 65.92 (50–79) 88.8% white, 5.7% black NR 100% 74.3% 5.03% | FFQ (122 items) Pre-diagnosis diet—average 1.5 years before diagnosis; post-diagnosis diet—average 1.8 years from diagnosis Pre-and post-diagnosis diet; Change in diet quality | HEI-2010 Q4 vs. Q1 Increase (≥15%) or decrease ((≥15%) vs. no change or stable (±14.9%) | All-cause death (763) BC death (242) Non-BC death (521) National Death Index | Pre-diagnosis diet All-cause mortality HEI-2010: 0.90 (0.72, 1.12) BC mortality HEI-2010: 1.12 (0.76, 1.64) Post-diagnosis diet All-cause mortality HEI-2010: 0.82 (0.66, 1.02) BC mortality HEI-2010: 0.97 (0.66, 1.43) Change of diet quality Increase All-cause mortality HEI-2010: 1.00 (0.81, 1.23) BC mortality HEI-2010: 0.98 (0.67, 1.44) Decrease All-cause mortality HEI-2010: 1.23 (0.99, 1.62) BC mortality HEI-2010: 1.67 (1.10, 2.54) | Age at diagnosis, total energy intake, race or ethnicity, education, income, breast cancer stage, ER status, PR status, smoking, physical activity, intervention arm, use of postmenopausal hormone therapy, alcohol intake, and BMI (post-diagnosis only-time from diagnosis to dietary intake assessment). | 8 |
Karavasiloglou 2019 USA | NHANES III Retrospective cohort 110 BC survivors Median 8.6 years after assessment | 62.4 91.6% white 26.4 ± 0.5 NR NR 16.9% | 24-h recall NR Post-diagnosis diet | HEI (good vs. poor), MDS (adherers vs. non-adherers) | All-cause death (NR) National Death Index | All-cause mortality HEI: 0.49 (0.25, 0.97) MDS: 0.78 (0.47, 1.32) | Age at survey, age at diagnosis, time from the completion of the questionnaire until the end of the follow-up, race/ethnicity, marital status, SES status, smoking status, physical activity, BMI, daily energy intake, history of menopausal hormone therapy use, prevalent chronic diseases at baseline | 7 |
Wang 2020 China | SBCSS Prospective cohort 3450 invasive BC survivors 8 years after assessment | 25–70 NR 24.0 ± 3.3–24.6 ± 3.8 49.57% 65.6% NR | FFQ (93 items) 5 years after surgery Post-diagnosis diet | CHFP-2007, CHFP-2016, DASH, HEI-2015 Q4 vs. Q1 | All-cause death (374) BC death (252) Non-BC death (122) BC events 2 (228) Shanghai Vital Statistics Registry | All-cause mortality CHFP-2007: 0.66 (0.48–0.89) CHFP-2016: 0.75 (0.55–1.01) mDASH: 0.66 (0.49–0.91) HEI-2015: 0.79 (0.57–1.10) BC mortality CHFP-2007: 0.58 (0.40, 0.84) CHFP-2016: 0.70 (0.48, 1.01) mDASH: 0.63 (0.44, 0.92) HEI-2015: 0.86 (0.58, 1.27) BC events 2 CHFP-2007: 0.84 (0.74–0.95) CHFP-2016: 0.84 (0.74–0.95) mDASH: 0.92 (0.85–0.99) HEI-2015: 0.92 (0.81- 1.05) | Age at dietary survey, interval between diagnosis and dietary survey, and total energy intake, income, education, marriage, menopausal status, BMI, physical activity, ER status, PR status, HER2 status, TNM stage, comorbidity, chemotherapy, radiation, and immunotherapy | 8 |
DiMaso 2020 Italy | Italian Case–Control Study Retrospective cohort 1453 BC survivors Median 12.6 years after diagnosis | 55 (23–78) NR <25 (21.9–36.1%) 25–29.9 (23.7–33.4%) ≥30 (25.6–29.1%) 62% NR 19.96% | FFQ (78 items) 2 years prior to diagnosis Pre-diagnosis diet | MDS Q3 vs. Q1 | All-cause death (503) BC death (365) Non-BC death (138) Population-based regional cancer registries | All-cause mortality MDS: 0.72 (0.57, 0.92) BC mortality MDS: 0.83 (0.62, 1.11) | Study design variables (area of residence, calendar period of cancer diagnosis), socio-demographic characteristics (age at diagnosis, education, menopausal status), clinical cancer features (TNM stage, ER/PR status), and total energy intake. | 8 |
Ergas 2021 USA | The Pathways Study Prospective cohort 3660 BC survivors 40,888 person-years | 9.7 (24–94) 68% white, 6.6% black 26.3–29.9 71% 83.96% 4.2% | FFQ (139 items) 2.3 months (range = 0.7–18.7) after diagnosis Post-diagnosis diet | ACS, aMED, DASH, HEI-2015 Q5 vs. Q1 | All-cause death (655) BC death (324) BC recurrence (461) Non-BC death (331) Follow-up interviews with relatives of participants, Medical chart review, Linkages with data from the state of California Social Security Administration, National Death Index | All-cause mortality ACS: 0.73 (0.56, 0.95) aMED: 0.79 (0.61, 1.03) DASH: 0.76 (0.58, 1.00) HEI-2015: 0.77 (0.6, 1.01) BC mortality ACS: 0.75 (0.52, 1.09) aMED: 0.79 (0.54, 1.16) DASH: 0.93 (0.63, 1.39) HEI-2105: 0.84 (0.56, 1.27) BC recurrence ACS: 1.19 (0.89, 1.57) aMED 1.08 (0.79, 1.47) DASH: 1.02 (0.73, 1.41) HEI-2015: 1.24 (0.88, 1.75) | Age at diagnosis and total energy, race and ethnicity, education level, menopausal status, physical activity, smoking, cancer stage, ER, PR, HER2, BMI, type of surgery, chemotherapy, radiation, and hormonal therapies. | 8 |
Diet Quality Index: Components (Score Range) | Encouraged Components (Number) | Discouraged/Moderation Components (Number) | Effect of Individual Components |
---|---|---|---|
HEI: 10 (0–100) HEI-2005: 12 (0–100) HEI-2010: 12 (0–100) HEI-2015: 13 (0–100) | HEI (5) vegetables, fruits, grain, dairy, variety HEI-2005 (7) total fruit, whole fruit, total vegetables, dark green and orange vegetables and legumes, total grains, whole grains, milk HEI-2010 (8) total fruit, whole fruit, total vegetables, greens and beans, whole grains, dairy, total protein foods, seafood and plant proteins HEI-2015 (8) total fruits, whole fruits, total vegetables, greens and beans, total protein, seafood and plant protein, whole grains, dairy | HEI (5) meat, fat, saturated fat, cholesterol, sodium HEI-2005 (5) meat and beans, oils, saturated fat, sodium, and calories from solid fats/alcoholic beverages/added sugars HEI-2010 (4) fatty acids (PUFAs + MUFAs)/SFAs), refined grains, sodium, empty calories HEI-2015 (5) refined grains, added sugars, fatty acids, sodium, saturated fats | Deshmukh 2018—NR Ergas 2021—decreased intake of refined grain/sodium had a lower risk; higher intake of whole grains/nuts had a higher risk of all-cause mortality George 2011—no effect George 2014—NR Sun 2018—NR Wang 2020—NR |
AHEI: 9 (0–90) AHEI-2010: 11 (0–110) | AHEI (5) vegetables, fruits, nuts, soy, cereal fiber AHEI-2010 (7) vegetables, fruits, nuts and legumes, whole grains, trans fats, long-chain (n − 3) fats (EPA + DHA), polyunsaturated fats | AHEI (4) ratio of white to red meat, trans fat, polyunsaturated:saturated fat ratio, alcohol AHEI-2010: (4) sugar-sweetened beverages and fruit juice, red/processed meat, sodium, alcohol | Kim 2011—NR Izano 2013—NR |
DASH: 8 (0–40) m-DASH: 7 (0–70) | DASH (5) fruits, vegetables, nuts, grains, low-fat dairy m-DASH (4) fruits and vegetables, dairy products, fish and eggs, nuts (nuts, beans, legumes) | DASH (3) red/processed meats, sugar-sweetened beverages, sodium m-DASH (3) poultry, fats and oil, sodium | Ergas 2021—no effect Izano 2013—NR Wang 2020—NR |
ACS: 3 (0–9) | (2) total fruits and vegetables, whole grains | (1) Total red and processed meats | Ergas 2021—greater intake of whole grains had a lower risk of all-cause mortality McCullough 2016—lower red/processed meats after diagnosis had lower risk of total, CVD, and non-breast cancer mortality |
MDS: 9 (0–9) aMED:9 (0–90) | MDS (6) fruit, vegetables, legumes, fish, MUFA/SFA ratio, cereal aMED (7) vegetables, legumes, fruits and nuts, whole grain, cereals, fish, MUFA/SFA ratio | MDS (3) meats, total dairy, alcohol aMED (2) red/processed meats, alcohol | DiMaso 2020—NR Ergas 2021—greater intake of nuts had a lower risk of all-cause mortality Kim 2011—NR |
CHFP-2007:10 (0–45) CHFP-2016:10 (0–45) | CHFP-2007 and 2016: (7) fruits, vegetables, grains, fish, eggs, beans, dairy products | CHFP-2007 and 2016: (3) meat and poultry, fats and oil, salt | Wang 2020—NR |
RFS: 5 (0–56) | (5) fruits, vegetables, whole grains, low saturated fat proteins, low fat dairy products | NR | Kim 2011—NR |
DQIR: 10 (0–100) | (9) grains, vegetables, fruits, total fat, saturated fat, cholesterol, iron, calcium, diet diversity | (1) added fat and sugar moderation | Kim 2011—NR |
All-Cause Mortality HR (95% CI) | |||||||
---|---|---|---|---|---|---|---|
Subgroup | Ergas 2021 | Di Maso 2020 | Wang 2020 | George 2014 | George 2011 | Meta-Analysis 1 | |
Age | Young | - | MDS: 1.01 (0.69, 1.48) | m-DASH: 0.99 (0.88, 1.08) | - | - | 0.96 (0.83, 1.10) |
Old | - | MDS: 0.55 (0.39, 0.76) | m-DASH: 0.90 (0.83, 0.97) | - | - | 0.72 (0.45, 1.17) | |
Menopausal status | Pre | - | MDS: 1.01 (0.65, 1.58) | - | - | - | 1.01 (0.65, 1.58) |
Post | - | MDS: 0.65 (0.48, 0.87) | - | - | - | 0.65 (0.48, 0.87) | |
Body mass index | <25 kg/m2 | - | MDS: 0.81 (0.58, 1.14) | m-DASH: 0.93 (0.85, 1.01) | - | - | 0.92 (0.85, 1.00) |
≥25 kg/m2 | - | MDS: 0.64 (0.45, 0.92) | m-DASH: 0.91 (0.83, 1.00) | - | - | 0.80 (0.57, 1.11) | |
Physical activity | Low | - | - | m-DASH: 0.95 (0.73, 1.03) | - | HEI-2005: 1.07 (0.30, 3.84) | 0.99 (0.89, 1.10) |
High | - | - | m-DASH: 0.87 (0.79, 0.96) | - | HEI-2005: 0.11 (0.04, 0.36) | 0.31 (0.04, 2.35) | |
ER | Positive | ACS: 0.68 (0.51, 1.01) aMED: 0.75 (0.56, 1.01) DASH: 0.70 (0.52, 0.95) HEI-2015: 0.80 (0.60, 1.06) | - | m-DASH: 0.93 (0.87, 1.00) | HEI-2005: 0.55 (0.38, 0.79) | - | 0.88 (0.82, 0.93) |
Negative | ACS: 1.05 (0.59, 1.89) aMED: 0.92 (0.49, 1.71) DASH: 1.25 (0.64, 2.43) HEI-2015: 0.73 (0.38, 1.40) | - | m-DASH: 0.91 (0.81, 1.03) | HEI-2005: 1.14 (0.58, 2.23) | - | 0.92 (0.83, 1.03) | |
PR | Positive | - | - | m-DASH: 0.95 (0.88, 1.02) | - | - | 0.95 (0.88, 1.02) |
Negative | - | - | m-DASH: 0.88 (0.79, 0.99) | - | - | 0.88 (0.79, 0.99) | |
HER2 | Positive | - | - | m-DASH: 0.83 (0.71, 0.88) | - | - | 0.83 (0.71, 0.88) |
Negative | - | - | m-DASH: 0.90 (0.83, 0.98) | - | - | 0.90 (0.83, 0.98) |
Breast Cancer Mortality HR (95% CI) | ||||||
---|---|---|---|---|---|---|
Subgroup | Wang 2020 | Di Maso 2020 | Izano 2013 | George 2011 | Meta-Analysis 1 | |
Age | Young | m-DASH: 0.97 (0.87, 1.09) | MDS: 1.06 (0.69, 1.61) | - | - | 0.98 (0.88, 1.09) |
Old | m-DASH: 0.86 (0.78, 0.95) | MDS: 0.65 (0.43, 0.98) | - | - | 0.81 (0.64, 1.02) | |
Menopause | Pre | - | MDS: 1.06 (0.65, 1.71) | - | - | 1.06 (0.65, 1.71) |
Post | - | MDS: 0.73 (0.51, 1.05) | - | - | 0.73 (0.51, 1.05) | |
BMI | <25 kg/m2 | - | MDS: 0.73 (0.48, 1.11) | - | - | 0.73 (0.48, 1.11) |
≥25 kg/m2 | - | MDS: 0.97 (0.64, 1.46) | - | - | 0.97 (0.64, 1.46) | |
Physical activity | Low | m-DASH: 0.93 (0.84, 1.03) | - | - | HEI-2005: 1.88 (0.41, 8.65) 2 | 0.93 (0.84, 1.03) |
High | m-DASH: 0.88 (0.78, 0.98) | - | - | HEI-2005: 0.09 (0.01, 0.89) | 0.37 (0.04, 3.26) | |
ER | Positive | m-DASH: 0.91 (0.84, 1.00) | - | AHEI-2010: 0.89 (0.30, 2.66)DASH: 0.87 (0.58, 1.32) | - | 0.88 (0.76, 1.03) |
Negative | m-DASH: 0.89 (0.77, 1.05) | - | AHEI-2010: 0.89 (0.30, 2.66)DASH: 0.65 (0.22, 1.93) | - | 0.91 (0.83, 0.99) | |
PR | Positive | m-DASH: 0.95 (0.87, 1.04) | - | - | - | 0.95 (0.87, 1.04) |
Negative | m-DASH: 0.83 (0.73, 0.96) | - | - | - | 0.83 (0.73, 0.96) | |
HER2 | Positive | m-DASH: 0.73 (0.60, 0.90) | - | - | - | 0.73 (0.60, 0.90) |
Negative | m-DASH: 0.91 (0.82, 1.02) | - | - | - | 0.91 (0.82, 1.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Kady, V.; Han, E.; Montan, K.; Normuminova, M.; Rovito, M.J. Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Int. J. Environ. Res. Public Health 2022, 19, 7579. https://doi.org/10.3390/ijerph19137579
Lee E, Kady V, Han E, Montan K, Normuminova M, Rovito MJ. Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. International Journal of Environmental Research and Public Health. 2022; 19(13):7579. https://doi.org/10.3390/ijerph19137579
Chicago/Turabian StyleLee, Eunkyung, Vanessa Kady, Eric Han, Kayla Montan, Marjona Normuminova, and Michael J. Rovito. 2022. "Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies" International Journal of Environmental Research and Public Health 19, no. 13: 7579. https://doi.org/10.3390/ijerph19137579
APA StyleLee, E., Kady, V., Han, E., Montan, K., Normuminova, M., & Rovito, M. J. (2022). Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. International Journal of Environmental Research and Public Health, 19(13), 7579. https://doi.org/10.3390/ijerph19137579