Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement
2.2.1. Internet Addiction Measurement
2.2.2. Psychosocial Problems Assessment
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Prevalence and Age–Sex Dependent Content Structure
3.3. Comorbidity Problematic Internet Use with Psychosocial Problems
3.3.1. Logistic Regression Analysis
3.3.2. Correlation Analysis
3.3.3. Multiple Regression Analysis within Structural Equation Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PIU | problematic Internet use |
PIUgen | generalized problematic Internet use |
PUgame | problematic video game use |
PUsocial | problematic social media use |
CIAS | Chen Internet Addiction Scale |
GASA | Game Addiction Scale for Adolescents |
SMDS | Social Media Disorder Scale |
SDQ | Strengths and Difficulties Questionnaire |
RMSEA | root mean square error of approximation |
CFI | comparative fit index |
TLI | Tucker–Lewis index |
OR | odds ratio |
References
- Bickham, D.S. Current Research and Viewpoints on Internet Addiction in Adolescents. Curr. Pediatrics Rep. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Oreilly, M. Internet addiction: A new disorder enters the medical lexicon. CMAJ 1996, 154, 1882–1883. [Google Scholar] [PubMed]
- Young, K.S. Psychology of computer use: XL. Addictive use of the Internet: A case that breaks the stereotype. Psychol. Rep. 1996, 79, 899–902. [Google Scholar] [CrossRef]
- Griffiths, M. Internet addiction: Fact or fiction? The Psychologist 1999, 12, 246–251. Available online: https://thepsychologist.bps.org.uk/volume-12/edition-5/internet-addiction-fact-or-fiction-0 (accessed on 1 May 2022).
- Rich, M.; Tsappis, M.; Kavanaugh, J.R. Problematic Interactive Media Use Among Children and Adolescents: Addiction, Compulsion, or Syndrome; Young, K.S., de Abreu, C.N., Eds.; Springer Publishing Company: New York, NY, USA, 2017; pp. 3–28. [Google Scholar]
- Kaess, M.; Klar, J.; Kindler, J.; Parzer, P.; Brunner, R.; Carli, V.; Sarchiapone, M.; Hoven, C.W.; Apter, A.; Balazs, J.; et al. Excessive and pathological Internet use—Risk-behavior or psychopathology? Addict. Behav. 2021, 123, 107045. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, L.; Zoratto, F.; Cimino, S.; Laviola, G.; Ammaniti, M.; Adriani, W. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues. Neurosci. Biobehav. Rev. 2017, 76, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Aboujaoude, E.; Koran, L.M.; Gamel, N.; Large, M.D.; Serpe, R.T. Potential markers for problematic internet use: A telephone survey of 2513 adults. CNS Spectr. 2006, 11, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Su, L.; Liu, T.; Gao, X. The relationship between impulsivity and Internet addiction in a sample of Chinese adolescents. Eur. Psychiatry 2007, 22, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Kim, J.Y.; Cho, C.B. Prevalence of Internet addiction and correlations with family factors among South Korean adolescents. Adolescence 2008, 43, 895–909. [Google Scholar] [PubMed]
- Gonzalez-Bueso, V.; Santamaria, J.J.; Fernandez, D.; Merino, L.; Montero, E.; Jimenez-Murcia, S.; Del Pino-Gutierrez, A.; Ribas, J. Internet Gaming Disorder in Adolescents: Personality, Psychopathology and Evaluation of a Psychological Intervention Combined with Parent Psychoeducation. Front. Psychol. 2018, 9, 787. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abus. 2010, 36, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef] [Green Version]
- Durkee, T.; Carli, V.; Floderus, B.; Wasserman, C.; Sarchiapone, M.; Apter, A.; Balazs, J.A.; Bobes, J.; Brunner, R.; Corcoran, P.; et al. Pathological Internet Use and Risk-Behaviors among European Adolescents. Int. J. Environ. Res. Public Health 2016, 13, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Huang, X.; Tao, R. Examining Factors Influencing Internet Addiction and Adolescent Risk Behaviors Among Excessive Internet Users. Health Commun. 2018, 33, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Suris, J.C.; Akre, C.; Piguet, C.; Ambresin, A.E.; Zimmermann, G.; Berchtold, A. Is Internet use unhealthy? A cross-sectional study of adolescent Internet overuse. Swiss Med. Wkly. 2014, 144, w14061. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, S.; Kasparov, E.; Smolnikova, M.; Shubina, M.; Gorbacheva, N.; Moskalenko, O. Internet Addiction and Sleep Problems among Russian Adolescents: A Field School-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 10397. [Google Scholar] [CrossRef] [PubMed]
- Ryding, F.C.; Kaye, L.K. “Internet addiction”: A conceptual minefield. Int. J. Ment. Health Addict. 2018, 16, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.D. Conceptual issues concerning internet addiction and internet gaming disorder: Further critique on Ryding and Kaye (2017). Int. J. Ment. Health Addict. 2018, 16, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Reer, F.; Festl, R.; Quandt, T. Investigating problematic social media and game use in a nationally representative sample of adolescents and younger adults. Behav. Inf. Technol. 2021, 40, 776–789. [Google Scholar] [CrossRef]
- Montag, C.; Bey, K.; Sha, P.; Li, M.; Chen, Y.F.; Liu, W.Y.; Zhu, Y.K.; Li, C.B.; Markett, S.; Keiper, J. Is it meaningful to distinguish between generalized and specific Internet addiction? Evidence from a cross-cultural study from Germany, Sweden, Taiwan and China. Asia-Pac. Psychiatry 2015, 7, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, O. Generalised versus specific internet use-related addiction problems: A mixed methods study on internet, gaming, and social networking behaviours. Int. J. Environ. Res. Public Health 2018, 15, 2913. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Weng, L.-J.; Su, Y.-J.; Wu, H.-M.; Yang, P.-F. Development of a Chinese Internet addiction scale and its psychometric study. Chin. J. Psychol. 2003, 45, 279–294. [Google Scholar] [CrossRef]
- Lemmens, J.S.; Valkenburg, P.M.; Peter, J. Development and Validation of a Game Addiction Scale for Adolescents. Media Psychol. 2009, 12, 77–95. [Google Scholar] [CrossRef]
- Van Den Eijnden, R.J.J.M.; Lemmens, J.S.; Valkenburg, P.M. The Social Media Disorder Scale. Comput. Hum. Behav. 2016, 61, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.; van den Eijnden, R.J.; Finkenauer, C.; Boniel-Nissim, M.; Marino, C.; Inchley, J.; Cosma, A.; Paakkari, L.; Stevens, G.W. Cross-national validation of the social media disorder scale: Findings from adolescents from 44 countries. Addiction 2022, 117, 784–795. [Google Scholar] [CrossRef]
- Goodman, R.; Meltzer, H.; Bailey, V. The strengths and difficulties questionnaire: A pilot study on the validity of the self-report version. Eur. Child Adolesc. Psychiatry 1998, 7, 125–130. [Google Scholar] [CrossRef]
- Ruchkin, V.; Koposov, R.; Schwab-Stone, M. The strength and difficulties questionnaire: Scale validation with Russian adolescents. J. Clin. Psychol. 2007, 63, 861–869. [Google Scholar] [CrossRef]
- Slobodskaya, H.R.; Akhmetova, O.A.; Ryabichenko, T.I. Siberian child and adolescent mental health: Prevalence estimates and psychosocial factors. Alaska Med. 2007, 49, 261–266. [Google Scholar]
- Trusova, A.V.; Kanashov, A.E. Prevalence of Internet addictive behaviour among Russian adolescents aged 15–18. Issues Narcol. [Vopr. Narkol.] 2021, 5, 5–14. Available online: https://psychiatr.ru/download/5539?view=1&name=05-14.pdf (accessed on 1 May 2022). (In Russian, In English).
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- The Jamovi Project. Jamovi. (Version 1.0) [Computer Software]. 2019. Available online: https://www.jamovi.org (accessed on 19 June 2020).
- Kaiser, S.; Kyrrestad, H.; Fossum, S. Cyberbullying status and mental health in Norwegian adolescents. Scand. J. Psychol. 2020, 61, 707–713. [Google Scholar] [CrossRef]
- Balhara, Y.P.S.; Mahapatra, A.; Sharma, P.; Bhargava, R. Problematic internet use among students in South-East Asia: Current state of evidence. Indian J. Public Health 2018, 62, 197. [Google Scholar] [CrossRef]
- Mak, K.K.; Lai, C.M.; Watanabe, H.; Kim, D.I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.C.; Aum, N.R.; Cheng, C. Epidemiology of internet behaviors and addiction among adolescents in six Asian countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef]
- Al-Khani, A.M.; Saquib, J.; Rajab, A.M.; Khalifa, M.A.; Almazrou, A.; Saquib, N. Internet addiction in Gulf countries: A systematic review and meta-analysis. J. Behav. Addict. 2021, 10, 601–610. [Google Scholar] [CrossRef]
- Paulus, F.W.; Ohmann, S.; von Gontard, A.; Popow, C. Internet gaming disorder in children and adolescents: A systematic review. Dev. Med. Child Neurol. 2018, 60, 645–659. [Google Scholar] [CrossRef]
- Fam, J.Y. Prevalence of internet gaming disorder in adolescents: A meta-analysis across three decades. Scand. J. Psychol. 2018, 59, 524–531. [Google Scholar] [CrossRef]
- Müller, K.W.; Janikian, M.; Dreier, M.; Wölfling, K.; Beutel, M.E.; Tzavara, C.; Richardson, C.; Tsitsika, A. Regular gaming behavior and internet gaming disorder in European adolescents: Results from a cross-national representative survey of prevalence, predictors, and psychopathological correlates. Eur. Child Adolesc. Psychiatry 2015, 24, 565–574. [Google Scholar] [CrossRef]
- Shao, Y.-J.; Zheng, T.; Wang, Y.-Q.; Liu, L.; Chen, Y.; Yao, Y.-S. Internet addiction detection rate among college students in the People’s Republic of China: A meta-analysis. Child Adolesc. Psychiatry Ment. Health 2018, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, L.; Huang, C.; Guo, J.; De Leon, S.A.; Lu, J.; Luo, X.; Zhang, X.Y. Sex differences in prevalence, risk factors and clinical correlates of internet addiction among Chinese college students. J. Affect. Disord. 2021, 279, 680–686. [Google Scholar] [CrossRef]
- Su, W.; Han, X.; Jin, C.; Yan, Y.; Potenza, M.N. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput. Hum. Behav. 2019, 99, 86–100. [Google Scholar] [CrossRef]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, C.J.; Harper, J.M.; Stahl, J.L.; Weigle, P. Internet and Video Game Addictions: Diagnosis, Epidemiology, and Neurobiology. Child Adolesc. Psychiatr. Clin. North Am. 2018, 27, 307–326. [Google Scholar] [CrossRef]
- Wang, C.-W.; Chan, C.L.; Mak, K.-K.; Ho, S.-Y.; Wong, P.W.; Ho, R.T. Prevalence and correlates of video and internet gaming addiction among Hong Kong adolescents: A pilot study. Sci. World, J. 2014, 2014, 874648. [Google Scholar] [CrossRef] [Green Version]
- Brunborg, G.S.; Mentzoni, R.A.; Melkevik, O.R.; Torsheim, T.; Samdal, O.; Hetland, J.; Andreassen, C.S.; Palleson, S. Gaming Addiction, Gaming Engagement, and Psychological Health Complaints Among Norwegian Adolescents. Media Psychol. 2013, 16, 115–128. [Google Scholar] [CrossRef]
- Mentzoni, R.A.; Brunborg, G.S.; Molde, H.; Myrseth, H.; Skouverøe, K.J.M.; Hetland, J.; Pallesen, S. Problematic video game use: Estimated prevalence and associations with mental and physical health. Cyberpsychology Behav. Soc. Netw. 2011, 14, 591–596. [Google Scholar] [CrossRef]
- Van Den Eijnden, R.; Koning, I.; Doornwaard, S.; Van Gurp, F.; Ter Bogt, T. The impact of heavy and disordered use of games and social media on adolescents’ psychological, social, and school functioning. J. Behav. Addict. 2018, 7, 697–706. [Google Scholar] [CrossRef]
- Paakkari, L.; Tynjälä, J.; Lahti, H.; Ojala, K.; Lyyra, N. Problematic Social Media Use and Health among Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 1885. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Thomasius, R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comput. Hum. Behav. 2020, 103, 31–36. [Google Scholar] [CrossRef]
- Pontes, H.M.; Macur, M.; Griffiths, M.D. Internet gaming disorder among Slovenian primary schoolchildren: Findings from a nationally representative sample of adolescents. J. Behav. Addict. 2016, 5, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Lau, Y.C.; Chan, L.; Luk, J.W. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict. Behav. 2021, 117, 106845. [Google Scholar] [CrossRef]
- Boer, M.; van den Eijnden, R.; Boniel-Nissim, M.; Wong, S.L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ Intense and Problematic Social Media Use and Their Well-Being in 29 Countries. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 2020, 66, S89–S99. [Google Scholar] [CrossRef]
- Aparicio-Martínez, P.; Ruiz-Rubio, M.; Perea-Moreno, A.-J.; Martínez-Jiménez, M.P.; Pagliari, C.; Redel-Macías, M.D.; Vaquero-Abellán, M. Gender differences in the addiction to social networks in the Southern Spanish university students. Telemat. Inform. 2020, 46, 101304. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252. [Google Scholar] [CrossRef] [Green Version]
- Petry, N.M.; Rehbein, F.; Gentile, D.A.; Lemmens, J.S.; Rumpf, H.J.; Mößle, T.; Bischof, G.; Tao, R.; Fung, D.S.; Borges, G. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction 2014, 109, 1399–1406. [Google Scholar] [CrossRef]
- Kaess, M.; Durkee, T.; Brunner, R.; Carli, V.; Parzer, P.; Wasserman, C.; Sarchiapone, M.; Hoven, C.; Apter, A.; Balazs, J. Pathological Internet use among European adolescents: Psychopathology and self-destructive behaviours. Eur. Child Adolesc. Psychiatry 2014, 23, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Sümen, A.; Evgin, D. Social media addiction in high school students: A cross-sectional study examining its relationship with sleep quality and psychological problems. Child Indic. Res. 2021, 14, 2265–2283. [Google Scholar] [CrossRef]
- González-Bueso, V.; Santamaría, J.J.; Fernández, D.; Merino, L.; Montero, E.; Ribas, J. Association between internet gaming disorder or pathological video-game use and comorbid psychopathology: A comprehensive review. Int. J. Environ. Res. Public Health 2018, 15, 668. [Google Scholar] [CrossRef] [Green Version]
- Király, O.; Griffiths, M.D.; Urbán, R.; Farkas, J.; Kökönyei, G.; Elekes, Z.; Tamás, D.; Demetrovics, Z. Problematic Internet use and problematic online gaming are not the same: Findings from a large nationally representative adolescent sample. Cyberpsychology Behav. Soc. Netw. 2014, 17, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Balhara, Y.P.S.; Singh, S.; Saini, R.; Dahiya, N.; Singh, A.B.; Kumar, R. Should Internet gaming disorder be considered a subtype of generalized problematic internet use? Findings from a study among medical college students. Perspect. Psychiatr. Care 2021, 57, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Pontes, H.M. Investigating the differential effects of social networking site addiction and Internet gaming disorder on psychological health. J. Behav. Addict. 2017, 6, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Vesely, S.; Klöckner, C.A. Social Desirability in Environmental Psychology Research: Three Meta-Analyses. Front. Psychol. 2020, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
- Latkin, C.A.; Edwards, C.; Davey-Rothwell, M.A.; Tobin, K.E. The relationship between social desirability bias and self-reports of health, substance use, and social network factors among urban substance users in Baltimore, Maryland. Addict. Behav. 2017, 73, 133–136. [Google Scholar] [CrossRef]
- Brenner, P.S.; DeLamater, J. Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias. Soc. Psychol. Q. 2016, 79, 333–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junghans, C.; Jones, M. Consent bias in research: How to avoid it. Heart 2007, 93, 1024–1025. [Google Scholar] [CrossRef] [Green Version]
Questionnaire | Cronbach’s Alpha | χ2 df, p | CFI | TLI | RMSEA (90% CI) |
---|---|---|---|---|---|
Chen Internet Addiction Scale (CIAS) | 0.909 | 5890 299 *** | 0.837 | 0.823 | 0.064 (0.063–0.066) |
Game Addiction Scale for Adolescents (GASA) | 0.917 | 688 14 *** | 0.968 | 0.952 | 0.103 (0.097–0.110) |
Social Media Disorder Scale (SMDS) | 0.679 | 464 27 *** | 0.898 | 0.865 | 0.060 (0.055–0.065) |
Strengths and Difficulties Questionnaire (SDQ) | 0.656 | 8272 275 *** | 0.528 | 0.485 | 0.080 (0.079–0.081) |
Variables | All Participants | Boys | Girls | p (Boys vs. Girls) |
---|---|---|---|---|
Age 12–14 | 2217 | 1003 (45.2%) | 1214 (54.8%) | - |
Age 15–18 | 2297 | 1089 (47.4) | 1208 (52.6%) | - |
Total | 4514 | 2092 (46.4%) | 2422 (53.6%) | - |
City | ||||
Krasnoyarsk | 2901 | 1327 (45.7%) | 1574 (54.3%) | - |
Abakan | 1400 | 674 (48.1%) | 726 (51.9%) | - |
Kyzyl | 213 | 91 (42.7%) | 122 (57.3%) | - |
Ethnicity | ||||
Russians | 3546 | 1656 (46.7%) | 1890 (53.3%) | - |
Khakass | 164 | 66 (40.2%) | 98 (59.8%) | - |
Tuvans | 397 | 179 (45.1%) | 218 (54.9%) | - |
Others | 407 | 191 (46.9%) | 216 (53.1%) | - |
CIAS results (n = 4514) | ||||
Chen Internet addiction Scale (CIAS) | 44.3 ± 12.5 | 42.5 ± 12.0 | 45.8 ± 12.7 | 0.009 |
Generalized problematic Internet use (PIUgen), CIAS ≥ 65 | 324 (7.2%) | 109 (5.2%) | 215 (8.9%) | <0.001 |
GASA results (n = 4514) | ||||
Game Addiction Scale for Adolescents (GASA) | 9.6 ± 6.7 | 12.1 ± 6.03 | 7.5 ± 6.3 | <0.001 |
Problematic computer game use (PUgame), 4/7 GASA items endorsed | 471 (10.4%) | 329 (15.7%) | 142 (5.9%) | <0.001 |
SMDS results (n = 4514) | ||||
Social Media Disorder Scale (SMDS) | 1.7 ± 1.8 | 1.1 ± 1.5 | 2.1 ± 1.9 | <0.001 |
Problematic social media use (PUsocial) 5/9 SMDS items endorsed | 359 (8.0%) | 73 (3.5%) | 286 (11.8%) | <0.001 |
Strengths and Difficulties Questionnaire (SDQ) results (n = 4514) | ||||
Total difficulties | 11.4 ± 5.4 | 10.4 ± 5.2 | 12.3 ± 5.4 | <0.001 |
Emotional symptoms | 3.1 ± 2.5 | 2.1 ± 2.1 | 3.8 ± 2.5 | <0.001 |
Hyperactivity | 3.3 ± 2.0 | 3.1 ± 2.0 | 3.4 ± 2.1 | <0.001 |
Conduct problems | 2.3 ± 1.5 | 2.3 ± 1.5 | 2.3 ± 1.5 | 0.955 |
Peer problems | 2.8 ± 1.8 | 2.8 ± 1.8 | 2.8 ± 1.8 | 0.687 |
Prosocial behavior | 7.1 ± 2.1 | 6.8 ± 2.2 | 7.4 ± 2.1 | <0.001 |
Age 12–14 | Age 15–18 | |||||||
---|---|---|---|---|---|---|---|---|
All n = 2217 | Boys n = 1003 | Girls n = 1214 | p (Boys vs. Girls) | All n = 2297 | Boys n = 1089 | Girls n = 1208 | p (Boys vs. Girls) | |
Generalized problematic Internet use (PIUgen), CIAS ≥ 65 | 150 (6.8%) | 57 (5.7%) | 93 (7.7%) | 0.078 χ2 = 3.1 | 174 (7.6%) | 52 (4.8%) | 122 (10.1%) | <0.001 χ2 = 22.4 |
Game users (computer game playing during past month) | 1795 (81.0%) | 930 (92.7%) | 865 (71.3%) | <0.001 χ2 = 162.9 | 1809 (78.8%) | 1089 (89.5%) | 720 (59.6%) | <0.001 χ2 = 263.7 |
Problematic computer game use (PUgame), 4/7 GASA items endorsed | 261 (11.8%) | 174 (17.4%) | 87 (7.2%) | <0.001 χ2 = 53.8 | 210 (9.1%) | 155 (14.2%) | 55 (4.6%) | <0.001 χ2 = 63.5 |
Computer game addiction, 7/7 GASA items endorsed | 21 (1.0%) | 11 (1.1%) | 10 (0.8%) | 0.660 χ2 = 0.2 | 27 (1.2%) | 21 (1.9%) | 6 (0.5%) | 0.003 χ2 = 8.9 |
Social media users (social media use during past year) | 2112 (95.3%) | 933 (93.0%) | 1179 (97.1%) | <0.001 χ2 = 19.5 | 2224 (96.8%) | 1045 (96.0%) | 1179 (97.6%) | 0.034 χ2 = 4.5 |
Problematic social media use (PUsocial), 5/9 SMDS items endorsed | 214 (9.7%) | 44 (4.4%) | 170 (14.0%) | <0.001 χ2 = 57.1 | 145 (6.3%) | 29 (2.7%) | 116 (9.6%) | <0.001 χ2 = 45.5 |
Social media addiction, 9/9 SMDS items endorsed | 10 (0.5%) | 4 (0.4%) | 6 (0.5%) | 0.988 χ2 < 0.1 | 8 (0.4%) | 3 (0.3%) | 5 (0.4%) | 0.836 χ2 < 0.1 |
Generalized Problematic Internet Use (Generalized PIU) | Problematic Computer Game Use (PUgame) | ||
---|---|---|---|
No | Yes | Total | |
No | 3839 (85.1%) | 351 (7.8%) | 4190 (92.8%) |
Yes | 204 (4.5%) | 120 (2.7%) | 324 (7.2%) |
Total | 4043 (89.6%) | 471 (10.4%) | 4514 (100%) |
Generalized Problematic Internet Use (Generalized PIU) | Problematic Social Media Use (PUsocial) | ||
---|---|---|---|
No | Yes | Total | |
No | 3980 (88.2%) | 210 (4.6%) | 4190 (92.8%) |
Yes | 175 (3.9%) | 149 (3.3%) | 324 (7.2%) |
Total | 4155 (92.1%) | 359 (7.9%) | 4514 (100%) |
Problematic Computer Game Use (PUgame) | Problematic Social Media Use (PUsocial) | ||
---|---|---|---|
No | Yes | Total | |
No | 3792 (84.0%) | 251 (5.6%) | 4043 (89.6%) |
Yes | 363 (8.0%) | 108 (2.4%) | 471 (10.4%) |
Total | 4155 (92.0%) | 359 (8.0%) | 4514 (100%) |
Generalized Problematic Internet Use (PIU) | Problematic Computer Game Use (PUgame) | Problematic Social Media Use (PUsocial) | |||||||
---|---|---|---|---|---|---|---|---|---|
OR Crude | OR Adjusted | p | OR Crude | OR Adjusted | p | OR Crude | OR Adjusted | p | |
Total difficulties | 4.58 3.62–5.79 | 4.47 3.52–5.67 | <0.001 | 3.02 2.45–3.71 | 3.79 3.05–4.71 | <0.001 | 3.84 3.06–4.81 | 3.48 2.76–4.38 | <0.001 |
Emotional symptoms | 3.83 3.05–4.82 | 3.65 2.89–4.64 | <0.001 | 1.77 1.45–2.16 | 2.89 2.32–3.60 | <0.001 | 4.07 3.26–5.07 | 3.31 2.63–4.16 | <0.001 |
Hyperactivity | 4.50 3.36–6.03 | 4.56 3.38–6.13 | <0.001 | 3.04 2.30–4.00 | 3.55 2.66–4.75 | <0.001 | 4.09 3.07–5.46 | 3.90 2.89–5.24 | <0.001 |
Conduct problems | 2.95 2.32–373 | 3.10 2.44–3.94 | <0.001 | 2.34 1.91–2.88 | 2.34 1.90–2.90 | <0.001 | 2.38 1.89–3.00 | 2.44 1.93–3.09 | <0.001 |
Peer problems | 2.12 1.73–2.73 | 2.17 1.73–2.73 | <0.001 | 1.25 1.18–1.31 | 1.25 1.19–1.32 | <0.001 | 1.14 1.08–1.21 | 1.14 1.08–1.21 | <0.001 |
Low level of prosocial behavior | 1.83 1.36–2.46 | 1.97 1.46–2.67 | <0.001 | 1.86 1.44–2.40 | 1.71 1.32–2.22 | <0.001 | 1.13 0.81–1.56 | 1.33 0.95–1.85 | 0.476 (OR crude) 0.098 (OR adjusted) |
Variables | CIAS | GASA | SMDS | Total Difficulties | Emotional Symptoms | Hyperactivity | Conduct Problems | Peer Problems | Prosocial Behavior |
---|---|---|---|---|---|---|---|---|---|
CIAS | - | ||||||||
GASA | 0.292 | - | |||||||
SMDS | 0.592 | 0.159 | - | ||||||
Total difficulties | 0.430 | 0.181 | 0.367 | - | |||||
Emotional symptoms | 0.376 | 0.043 | 0.370 | 0.767 | - | ||||
Hyperactivity | 0.358 | 0.176 | 0.271 | 0.698 | 0.346 | - | |||
Conduct problems | 0.234 | 0.161 | 0.194 | 0.597 | 0.270 | 0.364 | - | ||
Peer problems | 0.156 | 0.163 | 0.099 | 0.588 | 0.309 | 0.180 | 0.211 | - | |
Prosocial behavior | 0.088 | 0.134 | 0.023 | 0.174 | 0.007 | 0.147 | 0.188 | 0.187 | - |
Variables | Estimate | Approximate Standard Error | Critical Ratio | p |
---|---|---|---|---|
Female | 2.054 | 0.363 | 5.664 | <0.001 |
Age | 0.640 | 0.346 | 1.850 | 0.064 |
CIAS | ||||
Total difficulties | 2.847 | 0.666 | 4.278 | <0.001 |
Emotional symptoms | 4.701 | 0.486 | 9.669 | <0.001 |
Hyperactivity | 5.629 | 0.743 | 7.580 | <0.001 |
Conduct problems | 2.539 | 0.491 | 5.170 | <0.001 |
Peer problems | 0.814 | 0.414 | 1.964 | 0.049 |
Prosocial behavior | 2.550 | 0.555 | 4.592 | <0.001 |
Variables | Estimate | Approximate Standard Error | Critical Ratio | p |
---|---|---|---|---|
Female | −5.023 | 0.190 | −26.433 | <0.001 |
Age | −1.128 | 0.181 | −6.223 | <0.001 |
CIAS | ||||
Total difficulties | 1.907 | 0.349 | 5.469 | <0.001 |
Emotional symptoms | 0.897 | 0.255 | 3.521 | <0.001 |
Hyperactivity | 1.403 | 0.389 | 3.605 | <0.001 |
Conduct problems | 0.711 | 0.257 | 2.764 | 0.006 |
Peer problems | 0.697 | 0.217 | 3.211 | 0.001 |
Prosocial behavior | 0.885 | 0.291 | 3.041 | 0.002 |
Variables | Estimate | Approximate Standard Error | Critical Ratio | p |
---|---|---|---|---|
Female | 0.785 | 0.051 | 15.502 | <0.001 |
Age | −0.153 | 0.048 | −3.163 | 0.002 |
CIAS | ||||
Total difficulties | 0.201 | 0.093 | 2.166 | 0.030 |
Emotional symptoms | 0.709 | 0.068 | 10.442 | <0.001 |
Hyperactivity | 0.664 | 0.104 | 6.406 | <0.001 |
Conduct problems | 0.343 | 0.069 | 5.011 | <0.001 |
Peer problems | −0.010 | 0.058 | −0.178 | 0.859 |
Prosocial behavior | 0.192 | 0.078 | 2.479 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tereshchenko, S.; Kasparov, E.; Semenova, N.; Shubina, M.; Gorbacheva, N.; Novitckii, I.; Moskalenko, O.; Lapteva, L. Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems. Int. J. Environ. Res. Public Health 2022, 19, 7593. https://doi.org/10.3390/ijerph19137593
Tereshchenko S, Kasparov E, Semenova N, Shubina M, Gorbacheva N, Novitckii I, Moskalenko O, Lapteva L. Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems. International Journal of Environmental Research and Public Health. 2022; 19(13):7593. https://doi.org/10.3390/ijerph19137593
Chicago/Turabian StyleTereshchenko, Sergey, Edward Kasparov, Nadezhda Semenova, Margarita Shubina, Nina Gorbacheva, Ivan Novitckii, Olga Moskalenko, and Ludmila Lapteva. 2022. "Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems" International Journal of Environmental Research and Public Health 19, no. 13: 7593. https://doi.org/10.3390/ijerph19137593
APA StyleTereshchenko, S., Kasparov, E., Semenova, N., Shubina, M., Gorbacheva, N., Novitckii, I., Moskalenko, O., & Lapteva, L. (2022). Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems. International Journal of Environmental Research and Public Health, 19(13), 7593. https://doi.org/10.3390/ijerph19137593