Bi-Directionality between Physical Activity within School and Fundamental Movement Skills in School-Aged Students: A Cross-Lagged Study
Abstract
:1. Background
2. Methods
2.1. Research Objective
2.2. Research Design
2.3. Measuring Tools and Methods
- (1)
- Physical activity
- (2)
- FMS test
2.4. Statistical Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Reis, R.S.; Salvo, D.; Ogilvie, D.; Lambert, E.V.; Goenka, S.; Brownson, R.C. Scaling up physical activity interventions worldwide: Stepping up to larger and smarter approaches to get people moving. Lancet 2016, 388, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M.; Lancet Physical Activity Series 2 Executive Committee. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet 2016, 388, 1311–1324. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Fisher, A.; Reilly, J.J.; Kelly, L.A.; Montgomery, C.; Williamson, A.; Paton, J.Y.; Grant, S. Fundamental Movement Skills and Habitual Physical Activity in Young Children. Med. Sci. Sports Exerc. 2005, 37, 684–688. [Google Scholar] [CrossRef]
- Razak, L.A.; Jones, J.; Clinton-McHarg, T.; Wolfenden, L.; Lecathelinais, C.; Morgan, P.J.; Wiggers, J.H.; D’Espaignet, E.T.; Grady, A.; Yoong, S.L. Implementation of policies and practices to increase physical activity among children attending centre-based childcare: A cross-sectional study. Health Promot. J. Aust. 2020, 31, 207–215. [Google Scholar] [CrossRef]
- Barnett, L.M.; Stodden, D.; Cohen, K.E.; Smith, J.J.; Lubans, D.R.; Lenoir, M.; Iivonen, S.; Miller, A.D.; Laukkanen, A.; Dudley, D.; et al. Fundamental Movement Skills: An Important Focus. J. Teach. Phys. Educ. 2016, 35, 219–225. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Ying, B.B. Physical education interventions improve the fundamental movement skills in kindergarten: A systematic review and meta-analysis. Food Sci. Tech. 2022, 42. [Google Scholar] [CrossRef]
- Palmer, K.K.; Miller, A.L.; Meehan, S.K.; Robinson, L.E. The Motor skills At Playtime intervention improves children’s locomotor skills: A feasibility study. Child. Care Health Dev. 2020, 46, 599–606. [Google Scholar] [CrossRef]
- Eyre, E.L.; Adeyemi, L.J.; Cook, K.; Noon, M.; Tallis, J.; Duncan, M. Barriers and Facilitators to Physical Activity and FMS in Children Living in Deprived Areas in the UK: Qualitative Study. Int. J. Environ. Res. Public Health 2022, 19, 1717. [Google Scholar] [CrossRef]
- Russ, L.B.; Webster, C.A.; Beets, M.W.; Phillips, D.S. Systematic Review and Meta-Analysis of Multi-Component Interventions Through Schools to Increase Physical Activity. J. Phys. Act. Health 2014, 12, 1436–1446. [Google Scholar] [CrossRef]
- Opper, E.; Worth, A.; Wagner, M.; Bös, K. The module ‘Motorik’ in the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Motor fitness and physical activity of children and young people. Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.; Metcalf, J.S. The Mountain of Motor Development: A Metaphor. Mot. Dev. Res. Rev. 2002, 2, 183–202. [Google Scholar]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Jones, D.; Innerd, A.; Giles, E.L.; Azevedo, L.B. Association between fundamental motor skills and physical activity in the early years: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 542–552. [Google Scholar] [CrossRef]
- McConnell-Nzunga, J.; Mâsse, L.C.; Buckler, E.J.; Carson, V.; Faulkner, G.E.; Lau, E.Y.; McKay, H.A.; Temple, V.A.; Wolfenden, L.; Naylor, P.-J. Prevalence and Relationships among Physical Activity Policy, Environment, and Practices in Licensed Childcare Centers from a Manager and Staff Perspective. Int. J. Environ. Res. Public Health 2020, 17, 1064. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Hong, J.; Sun, J.; Lu, Y.; Liu, Y. Analysis of International Children and Youth Basic Sports Skills (1990–2019). J. Chengdu Inst. Phys. Educ. 2020, 46, 26–32. [Google Scholar]
- Kenny, D. Cross-Lagged Panel Design. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Garn, A.C.; Webster, E.K. Bifactor structure and model reliability of the Test of Gross Motor Development-3rd edition. J. Sci. Med. Sport 2021, 24, 67–73. [Google Scholar] [CrossRef]
- Montoye, A.H.K.; Mitrzyk, J.R.; Molesky, M.J. Comparative Accuracy of a Wrist-Worn Activity Tracker and a Smart Shirt for Physical Activity Assessment. Meas. Phys. Educ. Exerc. Sci. 2017, 21, 201–211. [Google Scholar] [CrossRef]
- Roos, L.; Taube, W.; Beeler, N.; Wyss, T. Validity of sports watches when estimating energy expenditure during running. BMC Sports Sci. Med. Rehabil. 2017, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Treacy, D.; Hassett, L.; Schurr, K.; Chagpar, S.; Paul, S.S.; Sherrington, C. Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting. Phys. Ther. 2017, 97, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, D. Introduction to the Special Section: Evaluation of the Psychometric Properties of the TGMD-3. J. Mot. Learn. Dev. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Diao, Y.; Dong, C.; Li, J. Big Muscle Action Development Test The Establishment of Shanghai Models. China Phys. Educ. Technol. 2018, 54, 99–105. [Google Scholar]
- Burns, R.D.; Bai, Y.; Byun, W.; Colotti, T.E.; Pfledderer, C.D.; Kwon, S.; Brusseau, T.A. Bidirectional relationships of physical activity and gross motor skills before and after summer break: Application of a cross-lagged panel model. J. Sport Health Sci. 2022, 11, 244–251. [Google Scholar] [CrossRef]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W.; Lancet Physical Activity Series Working Group. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Wrotniak, B.H.; Epstein, L.H.; Dorn, J.M.; Jones, K.E.; Kondilis, V.A. The Relationship Between Motor Proficiency and Physical Activity in Children. Pediatrics 2007, 118, 1758–1765. [Google Scholar] [CrossRef]
- Cohen, K.E.; Morgan, P.J.; Plotnikoff, R.C.; Barnett, L.M.; Lubans, D.R. Improvements in fundamental movement skill competency mediate the effect of the SCORES intervention on physical activity and cardiorespiratory fitness in children. J. Sport Sci. 2015, 33, 1908–1918. [Google Scholar] [CrossRef]
- Morrison, K.M.; Bugge, A.; El-Naaman, B.; Eisenmann, J.C.; Froberg, K.; Pfeiffer, K.A.; Andersen, L.B. Inter-Relationships Among Physical Activity, Body Fat, and Motor Performance in 6-to 8-Year-Old Danish Children. Pediart. Exerc. Sci. 2012, 24, 199–209. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, L. Systematic evaluation of the effect of mobility on the daily physical activity level of children and adolescents. Sch. Hyg. China 2018, 39, 1472–1480. [Google Scholar]
- Lopes, V.P.; Rodrigues, L.P.; Maia, J.A.R.; Malina, R.M. Motor coordination as predictor of physical activity in childhood. Scand. J. Med. Sci. Sports 2011, 21, 663–669. [Google Scholar] [CrossRef]
- Bryant, E.S.; James, R.S.; Birch, S.L.; Duncan, M.; Duncan, M. Prediction of habitual physical activity level and weight status from fundamental movement skill level. J. Sport Sci. 2014, 32, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, T.; Chen, S.; Ding, H. Empirical Study on Multi-Sport Module Development in Children Aged 4-5 Years. J. Xi’an Inst. Phys. Educ. 2020, 37, 480–487. [Google Scholar]
- Houwen, S.; Hartman, E.; Visscher, C. Physical activity and motor skills in children with and without visual impairments. Med. Sci. Sports Exerc. 2009, 41, 103–109. [Google Scholar] [CrossRef]
- Williams, H.G.; Pfeiffer, K.A.; O’Neill, J.R.; Dowda, M.; McIver, K.L.; Brown, W.H.; Pate, R.R. Motor skill performance and physical activity in preschool children. Obesity 2008, 16, 1421–1426. [Google Scholar] [CrossRef]
- Cliff, D.; Okely, A.; Smith, L.M.; McKeen, K. Relationships between Fundamental Movement Skills and Objectively Measured Physical Activity in Preschool Children. Pediatric Exerc. Sci. 2009, 21, 436–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Song, H. The Effect of Basic Motor Skills Development on Children’s Physical Activity and Health. Phys. Educ. Sci. 2017, 37, 54–61. [Google Scholar]
- Smith, W. Fundamental movement skills and fundamental games skills are complementary pairs and should be taught in complementary ways at all stages of skill development. Sport Educ. Soc. 2016, 21, 431–442. [Google Scholar] [CrossRef]
T1 (Pre-Test) | T2 (Post-Test) | |
---|---|---|
Number of steps | 4451 ± 1618 | 4440 ± 1641 |
Fundamental movement skill | 67.3 ± 12.7 | 76.1 ± 10.3 |
Locomotion skills | 32.6 ± 8.9 | 32.9 ± 9.1 |
Object Control skills | 35.6± 10.0 | 43.1 ± 9.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Li, B.; Meng, S.; Li, Y.; Tong, W. Bi-Directionality between Physical Activity within School and Fundamental Movement Skills in School-Aged Students: A Cross-Lagged Study. Int. J. Environ. Res. Public Health 2022, 19, 7624. https://doi.org/10.3390/ijerph19137624
Han S, Li B, Meng S, Li Y, Tong W. Bi-Directionality between Physical Activity within School and Fundamental Movement Skills in School-Aged Students: A Cross-Lagged Study. International Journal of Environmental Research and Public Health. 2022; 19(13):7624. https://doi.org/10.3390/ijerph19137624
Chicago/Turabian StyleHan, Shanshan, Bo Li, Shuqiao Meng, Yaxing Li, and Wenxia Tong. 2022. "Bi-Directionality between Physical Activity within School and Fundamental Movement Skills in School-Aged Students: A Cross-Lagged Study" International Journal of Environmental Research and Public Health 19, no. 13: 7624. https://doi.org/10.3390/ijerph19137624
APA StyleHan, S., Li, B., Meng, S., Li, Y., & Tong, W. (2022). Bi-Directionality between Physical Activity within School and Fundamental Movement Skills in School-Aged Students: A Cross-Lagged Study. International Journal of Environmental Research and Public Health, 19(13), 7624. https://doi.org/10.3390/ijerph19137624